Joint modelling of mental health markers through pregnancy : a Bayesian semi-parametric approach

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 2 vom: 14., Seite 388-405
1. Verfasser: Feng, Shengxiao Vincent (VerfasserIn)
Weitere Verfasser: van den Boom, Willem, De Iorio, Maria, Thng, Gladi J, Chan, Jerry K Y, Chen, Helen Y, Tan, Kok Hian, Kee, Michelle Z L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian non-parametrics Dirichlet process Gaussian process mental health pregnancy trajectory clustering
LEADER 01000caa a22002652 4500
001 NLM367734621
003 DE-627
005 20241023234644.0
007 cr uuu---uuuuu
008 240129s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2154329  |2 doi 
028 5 2 |a pubmed24n1577.xml 
035 |a (DE-627)NLM367734621 
035 |a (NLM)38283054 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Shengxiao Vincent  |e verfasserin  |4 aut 
245 1 0 |a Joint modelling of mental health markers through pregnancy  |b a Bayesian semi-parametric approach 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.10.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Maternal depression and anxiety through pregnancy have lasting societal impacts. It is thus crucial to understand the trajectories of its progression from preconception to postnatal period, and the risk factors associated with it. Within the Bayesian framework, we propose to jointly model seven outcomes, of which two are physiological and five non-physiological indicators of maternal depression and anxiety over time. We model the former two by a Gaussian process and the latter by an autoregressive model, while imposing a multidimensional Dirichlet process prior on the subject-specific random effects to account for subject heterogeneity and induce clustering. The model allows for the inclusion of covariates through a regression term. Our findings reveal four distinct clusters of trajectories of the seven health outcomes, characterising women's mental health progression from before to after pregnancy. Importantly, our results caution against the loose use of hair corticosteroids as a biomarker, or even a causal factor, for pregnancy mental health progression. Additionally, the regression analysis reveals a range of preconception determinants and risk factors for depressive and anxiety symptoms during pregnancy 
650 4 |a Journal Article 
650 4 |a Bayesian non-parametrics 
650 4 |a Dirichlet process 
650 4 |a Gaussian process 
650 4 |a mental health 
650 4 |a pregnancy 
650 4 |a trajectory clustering 
700 1 |a van den Boom, Willem  |e verfasserin  |4 aut 
700 1 |a De Iorio, Maria  |e verfasserin  |4 aut 
700 1 |a Thng, Gladi J  |e verfasserin  |4 aut 
700 1 |a Chan, Jerry K Y  |e verfasserin  |4 aut 
700 1 |a Chen, Helen Y  |e verfasserin  |4 aut 
700 1 |a Tan, Kok Hian  |e verfasserin  |4 aut 
700 1 |a Kee, Michelle Z L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 2 vom: 14., Seite 388-405  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:2  |g day:14  |g pages:388-405 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2154329  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 2  |b 14  |h 388-405