The vulnerability of World Heritage seagrass habitats to climate change
© 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 30(2024), 1 vom: 04. Jan., Seite e17113 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article UNESCO World Heritage adaptive capacity climate vulnerability cumulative impact environmental management marine protected area seagrass |
Zusammenfassung: | © 2023 The Authors. Global Change Biology published by John Wiley & Sons Ltd. Seagrass is an important natural attribute of 28 World Heritage (WH) properties. These WH seagrass habitats provide a wide range of services to adjacent ecosystems and human communities, and are one of the largest natural carbon sinks on the planet. Climate change is considered the greatest and fastest-growing threat to natural WH properties and evidence of climate-related impacts on seagrass habitats has been growing. The main objective of this study was to assess the vulnerability of WH seagrass habitats to location-specific key climate stressors. Quantitative surveys of seagrass experts and site managers were used to assess exposure, sensitivity and adaptive capacity of WH seagrass habitats to climate stressors, following the Climate Vulnerability Index approach. Over half of WH seagrass habitats have high vulnerability to climate change, mainly from the long-term increase in sea-surface temperature and short-term marine heatwaves. Potential impacts from climate change and certainty scores associated with them were higher than reported by a similar survey-based study from 10 years prior, indicating a shift in stakeholder perspectives during the past decade. Additionally, seagrass experts' opinions on the cumulative impacts of climate and direct-anthropogenic stressors revealed that high temperature in combination with high suspended sediments, eutrophication and hypoxia is likely to provoke a synergistic cumulative (negative) impact (p < .05). A key component contributing to the high vulnerability assessments was the low adaptive capacity; however, discrepancies between adaptive capacity scores and qualitative responses suggest that managers of WH seagrass habitats might not be adequately equipped to respond to climate change impacts. This thematic assessment provides valuable information to help prioritize conservation actions, monitoring activities and research in WH seagrass habitats. It also demonstrates the utility of a systematic framework to evaluate the vulnerability of thematic groups of protected areas that share a specific attribute |
---|---|
Beschreibung: | Date Completed 29.01.2024 Date Revised 29.01.2024 published: Print Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.17113 |