|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM36763984X |
003 |
DE-627 |
005 |
20240129232200.0 |
007 |
cr uuu---uuuuu |
008 |
240126s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.17082
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1274.xml
|
035 |
|
|
|a (DE-627)NLM36763984X
|
035 |
|
|
|a (NLM)38273569
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Han, Bingbing
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Relative importance between nitrification and denitrification to N2 O from a global perspective
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.01.2024
|
500 |
|
|
|a Date Revised 29.01.2024
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2023 John Wiley & Sons Ltd.
|
520 |
|
|
|a Nitrous oxide (N2 O) is a potent greenhouse gas, and its mitigation is a pressing task in the coming decade. However, it remains unclear which specific process between concurrent nitrification and denitrification dominates worldwide N2 O emission. We snagged an opportunity to ascertain whence the N2 O came and which were the controlling factors on the basis of 1315 soil N2 O observations from 74 peer-reviewed articles. The average N2 O emission derived from nitrification (N2 On ) was higher than that from denitrification (N2 Od ) worldwide. The ratios of nitrification-derived N2 O to denitrification-derived N2 O, hereof N2 On :N2 Od , exhibited large variations across terrestrial ecosystems. Although soil carbon and nitrogen content, pH, moisture, and clay content accounted for a part of the geographical variations in the N2 On :N2 Od ratio, ammonia-oxidizing microorganisms (AOM):denitrifier ratio was the pivotal driver for the N2 On :N2 Od ratios, since the AOM:denitrfier ratio accounted for 53.7% of geographical variations in N2 On :N2 Od ratios. Compared with natural ecosystems, soil pH exerted a more remarkable role to dictate the N2 On :N2 Od ratio in croplands. This study emphasizes the vital role of functional soil microorganisms in geographical variations of N2 On :N2 Od ratio and lays the foundation for the incorporation of soil AOM:denitrfier ratio into models to better predict N2 On :N2 Od ratio. Identifying soil N2 O derivation will provide a global potential benchmark for N2 O mitigation by manipulating the nitrification or denitrification
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a acidification
|
650 |
|
4 |
|a croplands
|
650 |
|
4 |
|a functional microorganisms
|
650 |
|
4 |
|a global warming
|
650 |
|
4 |
|a nitrous oxide mitigation
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
650 |
|
7 |
|a Nitrous Oxide
|2 NLM
|
650 |
|
7 |
|a K50XQU1029
|2 NLM
|
650 |
|
7 |
|a Ammonia
|2 NLM
|
650 |
|
7 |
|a 7664-41-7
|2 NLM
|
700 |
1 |
|
|a Yao, Yanzhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Yini
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Xiaoxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Lihua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Dunyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Niu, Shuli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xinping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhaolei
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 30(2024), 1 vom: 04. Jan., Seite e17082
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2024
|g number:1
|g day:04
|g month:01
|g pages:e17082
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.17082
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2024
|e 1
|b 04
|c 01
|h e17082
|