Modelling the probability of meeting IUCN Red List criteria to support reassessments

© 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 1 vom: 04. Jan., Seite e17119
1. Verfasser: Henry, Etienne G (VerfasserIn)
Weitere Verfasser: Santini, Luca, Butchart, Stuart H M, González-Suárez, Manuela, Lucas, Pablo M, Benítez-López, Ana, Mancini, Giordano, Jung, Martin, Cardoso, Pedro, Zizka, Alexander, Meyer, Carsten, Akçakaya, H Reşit, Berryman, Alex J, Cazalis, Victor, Di Marco, Moreno
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Aves assessment biodiversity conservation birds comparative analysis extinction risk functional traits
LEADER 01000caa a22002652 4500
001 NLM367639807
003 DE-627
005 20240129232200.0
007 cr uuu---uuuuu
008 240126s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.17119  |2 doi 
028 5 2 |a pubmed24n1274.xml 
035 |a (DE-627)NLM367639807 
035 |a (NLM)38273572 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Henry, Etienne G  |e verfasserin  |4 aut 
245 1 0 |a Modelling the probability of meeting IUCN Red List criteria to support reassessments 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.01.2024 
500 |a Date Revised 29.01.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Comparative extinction risk analysis-which predicts species extinction risk from correlation with traits or geographical characteristics-has gained research attention as a promising tool to support extinction risk assessment in the IUCN Red List of Threatened Species. However, its uptake has been very limited so far, possibly because existing models only predict a species' Red List category, without indicating which Red List criteria may be triggered. This prevents such approaches to be integrated into Red List assessments. We overcome this implementation gap by developing models that predict the probability of species meeting individual Red List criteria. Using data on the world's birds, we evaluated the predictive performance of our criterion-specific models and compared it with the typical criterion-blind modelling approach. We compiled data on biological traits (e.g. range size, clutch size) and external drivers (e.g. change in canopy cover) often associated with extinction risk. For each specific criterion, we modelled the relationship between extinction risk predictors and species' Red List category under that criterion using ordinal regression models. We found criterion-specific models were better at identifying threatened species compared to a criterion-blind model (higher sensitivity), but less good at identifying not threatened species (lower specificity). As expected, different covariates were important for predicting extinction risk under different criteria. Change in annual temperature was important for criteria related to population trends, while high forest dependency was important for criteria related to restricted area of occupancy or small population size. Our criteria-specific method can support Red List assessors by producing outputs that identify species likely to meet specific criteria, and which are the most important predictors. These species can then be prioritised for re-evaluation. We expect this new approach to increase the uptake of extinction risk models in Red List assessments, bridging a long-standing research-implementation gap 
650 4 |a Journal Article 
650 4 |a Aves 
650 4 |a assessment 
650 4 |a biodiversity conservation 
650 4 |a birds 
650 4 |a comparative analysis 
650 4 |a extinction risk 
650 4 |a functional traits 
700 1 |a Santini, Luca  |e verfasserin  |4 aut 
700 1 |a Butchart, Stuart H M  |e verfasserin  |4 aut 
700 1 |a González-Suárez, Manuela  |e verfasserin  |4 aut 
700 1 |a Lucas, Pablo M  |e verfasserin  |4 aut 
700 1 |a Benítez-López, Ana  |e verfasserin  |4 aut 
700 1 |a Mancini, Giordano  |e verfasserin  |4 aut 
700 1 |a Jung, Martin  |e verfasserin  |4 aut 
700 1 |a Cardoso, Pedro  |e verfasserin  |4 aut 
700 1 |a Zizka, Alexander  |e verfasserin  |4 aut 
700 1 |a Meyer, Carsten  |e verfasserin  |4 aut 
700 1 |a Akçakaya, H Reşit  |e verfasserin  |4 aut 
700 1 |a Berryman, Alex J  |e verfasserin  |4 aut 
700 1 |a Cazalis, Victor  |e verfasserin  |4 aut 
700 1 |a Di Marco, Moreno  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 1 vom: 04. Jan., Seite e17119  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:1  |g day:04  |g month:01  |g pages:e17119 
856 4 0 |u http://dx.doi.org/10.1111/gcb.17119  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 1  |b 04  |c 01  |h e17119