Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils : Insights from an isotope tracing model

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 1 vom: 04. Jan., Seite e17156
1. Verfasser: Wang, Xu (VerfasserIn)
Weitere Verfasser: Wang, Chao, Fan, Xianlei, Sun, Lifei, Sang, Changpeng, Wang, Xugao, Jiang, Ping, Fang, Yunting, Bai, Edith
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article microbial modeling microbial necromass mineral protection soil nitrogen cycles soil organic matter stable isotopes Carbon 7440-44-0 Soil mehr... Nitrogen N762921K75 Clay T1FAD4SS2M Minerals Isotopes
Beschreibung
Zusammenfassung:© 2024 John Wiley & Sons Ltd.
Evidence is emerging that microbial products and residues (necromass) contribute greatly to stable soil organic matter (SOM), which calls for the necessity of separating the microbial necromass from other SOM pools in models. However, the understanding on how microbial necromass stabilizes in soil, especially the mineral protection mechanisms, is still lacking. Here, we incubated 13 C- and 15 N-labelled microbial necromass in a series of artificial soils varying in clay minerals and metal oxides. We found the mineralization, adsorption and desorption rate constants of necromass nitrogen were higher than those of necromass carbon. The accumulation rates of necromass carbon and nitrogen in mineral-associated SOM were positively correlated with the specific surface area of clay minerals. Our results provide direct evidence for the protection role of mineral in microbial necromass stabilization and provide a platform for simulating microbial necromass separately in SOM models
Beschreibung:Date Completed 29.01.2024
Date Revised 29.01.2024
published: Print
Citation Status MEDLINE
ISSN:1365-2486
DOI:10.1111/gcb.17156