Methyl jasmonate improves resistance in scab-susceptible Red Delicious apple by altering ROS homeostasis and enhancing phenylpropanoid biosynthesis
Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 207(2024) vom: 15. Feb., Seite 108371 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Antioxidant HPLC MeJA Metabolic reprogramming Oxidative stress ROS Reactive Oxygen Species methyl jasmonate 900N171A0F mehr... |
Zusammenfassung: | Copyright © 2024 Elsevier Masson SAS. All rights reserved. Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 μM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms |
---|---|
Beschreibung: | Date Completed 18.03.2024 Date Revised 18.03.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2024.108371 |