Weakly Supervised AUC Optimization : A Unified Partial AUC Approach

Since acquiring perfect supervision is usually difficult, real-world machine learning tasks often confront inaccurate, incomplete, or inexact supervision, collectively referred to as weak supervision. In this work, we present WSAUC, a unified framework for weakly supervised AUC optimization problems...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 24. Juli, Seite 4780-4795
Auteur principal: Xie, Zheng (Auteur)
Autres auteurs: Liu, Yu, He, Hao-Yuan, Li, Ming, Zhou, Zhi-Hua
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367563304
003 DE-627
005 20250305173316.0
007 cr uuu---uuuuu
008 240125s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3357814  |2 doi 
028 5 2 |a pubmed25n1224.xml 
035 |a (DE-627)NLM367563304 
035 |a (NLM)38265903 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Zheng  |e verfasserin  |4 aut 
245 1 0 |a Weakly Supervised AUC Optimization  |b A Unified Partial AUC Approach 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Since acquiring perfect supervision is usually difficult, real-world machine learning tasks often confront inaccurate, incomplete, or inexact supervision, collectively referred to as weak supervision. In this work, we present WSAUC, a unified framework for weakly supervised AUC optimization problems, which covers noisy label learning, positive-unlabeled learning, multi-instance learning, and semi-supervised learning scenarios. Within the WSAUC framework, we first frame the AUC optimization problems in various weakly supervised scenarios as a common formulation of minimizing the AUC risk on contaminated sets, and demonstrate that the empirical risk minimization problems are consistent with the true AUC. Then, we introduce a new type of partial AUC, specifically, the reversed partial AUC (rpAUC), which serves as a robust training objective for AUC maximization in the presence of contaminated labels. WSAUC offers a universal solution for AUC optimization in various weakly supervised scenarios by maximizing the empirical rpAUC. Theoretical and experimental results under multiple settings support the effectiveness of WSAUC on a range of weakly supervised AUC optimization tasks 
650 4 |a Journal Article 
700 1 |a Liu, Yu  |e verfasserin  |4 aut 
700 1 |a He, Hao-Yuan  |e verfasserin  |4 aut 
700 1 |a Li, Ming  |e verfasserin  |4 aut 
700 1 |a Zhou, Zhi-Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 24. Juli, Seite 4780-4795  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:24  |g month:07  |g pages:4780-4795 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3357814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 24  |c 07  |h 4780-4795