Fine-Grained Accident Detection : Database and Algorithm

This paper presents a novel fine-grained task for traffic accident analysis. Accident detection in surveillance or dashcam videos is a common task in the field of traffic accident analysis by using videos. However, common accident detection does not analyze the specific particulars of the accident,...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 08., Seite 1059-1069
Auteur principal: Yu, Hongyang (Auteur)
Autres auteurs: Zhang, Xinfeng, Wang, Yaowei, Huang, Qingming, Yin, Baocai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:This paper presents a novel fine-grained task for traffic accident analysis. Accident detection in surveillance or dashcam videos is a common task in the field of traffic accident analysis by using videos. However, common accident detection does not analyze the specific particulars of the accident, only identifies the accident's existence or occurrence time in a video. In this paper, we define the novel fine-grained accident detection task which contains fine-grained accident classification, temporal-spatial occurrence region localization, and accident severity estimation. A transformer-based framework combining the RGB and optical flow information of videos is proposed for fine-grained accident detection. Additionally, we introduce a challenging Fine-grained Accident Detection (FAD) database that covers multiple tasks in surveillance videos which places more emphasis on the overall perspective. Experimental results demonstrate that our model could effectively extract the video features for multiple tasks, indicating that current traffic accident analysis has limitations in dealing with the FAD task and that further research is indeed needed
Description:Date Revised 02.02.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3355812