The global distribution of angiosperm genome size is shaped by climate

© 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 242(2024), 2 vom: 21. März, Seite 744-759
1. Verfasser: Bureš, Petr (VerfasserIn)
Weitere Verfasser: Elliott, Tammy L, Veselý, Pavel, Šmarda, Petr, Forest, Félix, Leitch, Ilia J, Nic Lughadha, Eimear, Soto Gomez, Marybel, Pironon, Samuel, Brown, Matilda J M, Šmerda, Jakub, Zedek, František
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article UV‐B radiation chromosome size flowering plants geographic range size latitudinal gradient nuclear DNA content polyploidy temperature
Beschreibung
Zusammenfassung:© 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.
Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering
Beschreibung:Date Completed 22.03.2024
Date Revised 22.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.19544