Nanofluid-Guided Janus Membrane for High-Efficiency Electricity Generation from Water Evaporation

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 23 vom: 22. Juni, Seite e2312209
1. Verfasser: Han, Yongxiang (VerfasserIn)
Weitere Verfasser: Wang, Yanlei, Wang, Mi, Dong, Hao, Nie, Yi, Zhang, Suojiang, He, Hongyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article energy harvest ionic liquids nanoconfined transport power generation water evaporation
LEADER 01000caa a22002652 4500
001 NLM367530384
003 DE-627
005 20240608002723.0
007 cr uuu---uuuuu
008 240124s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202312209  |2 doi 
028 5 2 |a pubmed24n1432.xml 
035 |a (DE-627)NLM367530384 
035 |a (NLM)38262622 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Yongxiang  |e verfasserin  |4 aut 
245 1 0 |a Nanofluid-Guided Janus Membrane for High-Efficiency Electricity Generation from Water Evaporation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Harvesting electricity from widespread water evaporation provides an alternative route to cleaner power generation technology. However, current evaporation power generation (EPG) mainly depends on the dissociation process of certain functional groups (e.g., SO3H) in water, which suffers from low power density and short-term output. Herein, the Janus membrane is prepared by combining nanofluid and water-grabbing material for EPG, where the nanoconfined ionic liquids (NCILs) serve as ion sources instead of the functional groups. Benefiting from the selective and fast transport of anions in NCILs, such EPG demonstrates excellent power performance with a voltage of 0.63 V, a short-circuit current of 140 µA, and a maximum power density of 16.55 µW cm-2 while operating for at least 180 h consistently. Molecular dynamics (MD) simulation and surface potential analysis reveal the molecular mechanism, that is, the diffusion of Cl- anions during evaporation is much faster than that of cations, generating the voltage and current across the membrane. Furthermore, the device performs well in varying environmental conditions, including different water temperatures and sources of evaporating water, showcasing its adaptability and integrability. Overall, the nanofluid-guided Janus membrane can efficiently transform low-grade thermal energy in evaporation into electricity, showing a competitive advantage over other sustainable applied approaches 
650 4 |a Journal Article 
650 4 |a energy harvest 
650 4 |a ionic liquids 
650 4 |a nanoconfined transport 
650 4 |a power generation 
650 4 |a water evaporation 
700 1 |a Wang, Yanlei  |e verfasserin  |4 aut 
700 1 |a Wang, Mi  |e verfasserin  |4 aut 
700 1 |a Dong, Hao  |e verfasserin  |4 aut 
700 1 |a Nie, Yi  |e verfasserin  |4 aut 
700 1 |a Zhang, Suojiang  |e verfasserin  |4 aut 
700 1 |a He, Hongyan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 23 vom: 22. Juni, Seite e2312209  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:23  |g day:22  |g month:06  |g pages:e2312209 
856 4 0 |u http://dx.doi.org/10.1002/adma.202312209  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 23  |b 22  |c 06  |h e2312209