Development of a multi-step screening procedure for redox active molecules in organic radical polymer anodes and as redox flow anolytes
© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 45(2024), 14 vom: 30. Apr., Seite 1112-1129 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article DFT multi‐step screening organic redox flow battery polymer‐based batteries viologen |
Zusammenfassung: | © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. Benzo[d]-X-zolyl-pyridinyl (XO, S, NH) radicals represent a promising class of redox-active molecules for organic batteries. We present a multistep screening procedure to identify the most promising radical candidates. Experimental investigations and highly correlated wave function-based calculations are performed to determine benchmark redox potentials. Based on these, the accuracies of different methods (semi-empirical, density functional theory, wave function-based), solvent models, dispersion corrections, and basis sets are evaluated. The developed screening procedure consists of three steps: First, a conformer search is performed with CREST. The molecules are selected based on the redox potentials calculated using GFN2-xTB. Second, HOMO energies calculated with reparametrized B3LYP-D3(BJ) and the def2-SVP basis set are used as selection criteria. The final molecules are selected based on the redox potentials calculated from Gibbs energies using BP86-D3(BJ)/def2-TZVP. With this multistep screening approach, promising molecules can be suggested for synthesis, and structure-property relationships can be derived |
---|---|
Beschreibung: | Date Revised 12.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.27299 |