Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning

Nowadays, Deepfake videos are widely spread over the Internet, which severely impairs the public trustworthiness and social security. Although more and more reliable detectors have recently sprung up for resisting against that new-emerging tampering technique, some challengeable issues still need to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 7 vom: 01. Juni, Seite 4654-4668
1. Verfasser: Qiao, Tong (VerfasserIn)
Weitere Verfasser: Xie, Shichuang, Chen, Yanli, Retraint, Florent, Luo, Xiangyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367430797
003 DE-627
005 20240606232326.0
007 cr uuu---uuuuu
008 240123s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3356814  |2 doi 
028 5 2 |a pubmed24n1430.xml 
035 |a (DE-627)NLM367430797 
035 |a (NLM)38252582 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiao, Tong  |e verfasserin  |4 aut 
245 1 0 |a Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Nowadays, Deepfake videos are widely spread over the Internet, which severely impairs the public trustworthiness and social security. Although more and more reliable detectors have recently sprung up for resisting against that new-emerging tampering technique, some challengeable issues still need to be addressed, such that most of Deepfake video detectors under the framework of the supervised mechanism require a large scale of samples with accurate labels for training. When the amount of the training samples with the true labels are not enough or the training data are maliciously poisoned by adversaries, the supervised classifier is probably not reliable for detection. To tackle that tough issue, it is proposed to design a fully unsupervised Deepfake detector. In particular, in the whole procedure of training or testing, we have no idea of any information about the true labels of samples. First, we novelly design a pseudo-label generator for labeling the training samples, where the traditional hand-crafted features are used to characterize both types of samples. Second, the training samples with the pseudo-labels are fed into the proposed enhanced contrastive learner, in which the discriminative features are further extracted and continually refined by iteration on the guidance of the contrastive loss. Last, relying on the inter-frame correlation, we complete the final binary classification between real and fake videos. A large scale of experimental results empirically verify the effectiveness of our proposed unsupervised Deepfake detector on the benchmark datasets including FF++, Celeb-DF, DFD, DFDC, and UADFV. Furthermore, our proposed well-performed detector is superior to the current unsupervised method, and comparable to the baseline supervised methods. More importantly, when facing the problem of the labeled data poisoned by malicious adversaries or insufficient data for training, our proposed unsupervised Deepfake detector performs its powerful superiority 
650 4 |a Journal Article 
700 1 |a Xie, Shichuang  |e verfasserin  |4 aut 
700 1 |a Chen, Yanli  |e verfasserin  |4 aut 
700 1 |a Retraint, Florent  |e verfasserin  |4 aut 
700 1 |a Luo, Xiangyang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 7 vom: 01. Juni, Seite 4654-4668  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:7  |g day:01  |g month:06  |g pages:4654-4668 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3356814  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 7  |b 01  |c 06  |h 4654-4668