Hyperspectral Compressive Snapshot Reconstruction via Coupled Low-Rank Subspace Representation and Self-Supervised Deep Network

Coded aperture snapshot spectral imaging (CASSI) is an important technique for capturing three-dimensional (3D) hyperspectral images (HSIs), and involves an inverse problem of reconstructing the 3D HSI from its corresponding coded 2D measurements. Existing model-based and learning-based methods eith...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 926-941
1. Verfasser: Chen, Yong (VerfasserIn)
Weitere Verfasser: Lai, Wenzhen, He, Wei, Zhao, Xi-Le, Zeng, Jinshan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM36743072X
003 DE-627
005 20250305171457.0
007 cr uuu---uuuuu
008 240123s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3354127  |2 doi 
028 5 2 |a pubmed25n1224.xml 
035 |a (DE-627)NLM36743072X 
035 |a (NLM)38252571 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yong  |e verfasserin  |4 aut 
245 1 0 |a Hyperspectral Compressive Snapshot Reconstruction via Coupled Low-Rank Subspace Representation and Self-Supervised Deep Network 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Coded aperture snapshot spectral imaging (CASSI) is an important technique for capturing three-dimensional (3D) hyperspectral images (HSIs), and involves an inverse problem of reconstructing the 3D HSI from its corresponding coded 2D measurements. Existing model-based and learning-based methods either could not explore the implicit feature of different HSIs or require a large amount of paired data for training, resulting in low reconstruction accuracy or poor generalization performance as well as interpretability. To remedy these deficiencies, this paper proposes a novel HSI reconstruction method, which exploits the global spectral correlation from the HSI itself through a formulation of model-driven low-rank subspace representation and learns the deep prior by a data-driven self-supervised deep learning scheme. Specifically, we firstly develop a model-driven low-rank subspace representation to decompose the HSI as the product of an orthogonal basis and a spatial representation coefficient, then propose a data-driven deep guided spatial-attention network (called DGSAN) to adaptively reconstruct the implicit spatial feature of HSI by learning the deep coefficient prior (DCP), and finally embed these implicit priors into an iterative optimization framework through a self-supervised training way without requiring any training data. Thus, the proposed method shall enhance the reconstruction accuracy, generalization ability, and interpretability. Extensive experiments on several datasets and imaging systems validate the superiority of our method. The source code and data of this article will be made publicly available at https://github.com/ChenYong1993/LRSDN 
650 4 |a Journal Article 
700 1 |a Lai, Wenzhen  |e verfasserin  |4 aut 
700 1 |a He, Wei  |e verfasserin  |4 aut 
700 1 |a Zhao, Xi-Le  |e verfasserin  |4 aut 
700 1 |a Zeng, Jinshan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 926-941  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:926-941 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3354127  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 926-941