|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM367419378 |
003 |
DE-627 |
005 |
20250305171327.0 |
007 |
cr uuu---uuuuu |
008 |
240122s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202309708
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1224.xml
|
035 |
|
|
|a (DE-627)NLM367419378
|
035 |
|
|
|a (NLM)38251443
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Song, Hanchan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fully Memristive Elementary Motion Detectors for a Maneuver Prediction
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.05.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Insects can efficiently perform object motion detection via a specialized neural circuit, called an elementary motion detector (EMD). In contrast, conventional machine vision systems require significant computational resources for dynamic motion processing. Here, a fully memristive EMD (M-EMD) is presented that implements the Hassenstein-Reichardt (HR) correlator, a biological model of the EMD. The M-EMD consists of a simple Wye (Y) configuration, including a static resistor, a dynamic memristor, and a Mott memristor. The resistor and dynamic memristor introduce different signal delays, enabling spatio-temporal signal integration in the subsequent Mott memristor, resulting in a direction-selective response. In addition, a neuromorphic system is developed employing the M-EMDs to predict a lane-changing maneuver by vehicles on the road. The system achieved a high accuracy (> 87%) in predicting future lane-changing maneuvers on the Next Generation Simulation (NGSIM) dataset while reducing the computational cost by 92.9% compared to the conventional neuromorphic system without the M-EMD, suggesting its strong potential for edge-level computing
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Hassenstein–Reichardt model
|
650 |
|
4 |
|a maneuver predictions
|
650 |
|
4 |
|a memristors
|
650 |
|
4 |
|a motion detections
|
650 |
|
4 |
|a neuromorphic visions
|
700 |
1 |
|
|a Lee, Min Gu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Gwangmin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Do Hoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Geunyoung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Park, Woojoon
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rhee, Hakseung
|e verfasserin
|4 aut
|
700 |
1 |
|
|a In, Jae Hyun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Kyung Min
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 18 vom: 01. Mai, Seite e2309708
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:18
|g day:01
|g month:05
|g pages:e2309708
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202309708
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 18
|b 01
|c 05
|h e2309708
|