Tunable 2D Electron- and 2D Hole States Observed at Fe/SrTiO3 Interfaces
© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 20. Apr., Seite e2309217 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D electron gases 2D hole gases oxide interfaces oxide‐based electronics |
Zusammenfassung: | © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. Oxide electronics provide the key concepts and materials for enhancing silicon-based semiconductor technologies with novel functionalities. However, a basic but key property of semiconductor devices still needs to be unveiled in its oxidic counterparts: the ability to set or even switch between two types of carriers-either negatively (n) charged electrons or positively (p) charged holes. Here, direct evidence for individually emerging n- or p-type 2D band dispersions in STO-based heterostructures is provided using resonant photoelectron spectroscopy. The key to tuning the carrier character is the oxidation state of an adjacent Fe-based interface layer: For Fe and FeO, hole bands emerge in the empty bandgap region of STO due to hybridization of Ti- and Fe- derived states across the interface, while for Fe3O4 overlayers, an 2D electron system is formed. Unexpected oxygen vacancy characteristics arise for the hole-type interfaces, which as of yet had been exclusively assigned to the emergence of 2DESs. In general, this finding opens up the possibility to straightforwardly switch the type of conductivity at STO interfaces by the oxidation state of a redox overlayer. This will extend the spectrum of phenomena in oxide electronics, including the realization of combined n/p-type all-oxide transistors or logic gates |
---|---|
Beschreibung: | Date Revised 11.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202309217 |