Nano-fibre matrix loaded with multi-nutrients to achieve balanced crop nutrition in greengram (Vigna radiata L.)

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 207(2024) vom: 01. Feb., Seite 108369
1. Verfasser: Mohanraj, J (VerfasserIn)
Weitere Verfasser: Subramanian, K S, Yuvaraj, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Electrospinning Green gram Multinutrient composites Nano-fibre Polyvinyl alcohol Soil
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
This research paper focuses on exploring the possibility of delivering macro, micro and trace elements using seed encapsulation through nano-fibres that are known to improve the nutrient use efficiencies while reducing the loss of nutrients. The nano-fibres were developed using an electrospinning machine by subjecting the polymer solution (10% polyvinyl alcohol PVA) loaded with recommended quantities of nutrients under optimal solution (pH, concentration, viscosity) and process (voltage, flow rate, tip-to-collector distance) parameters. The nano-fibres were characterized using SEM, TEM, FT-IR, XRD, TGA and Impedance spectra besides nutrient release pattern by ICP-MS. The data have clearly shown that nano-fibres retained nutrients and released slowly up to 35 days. After the characterization, green gram (Vigna radiata L) seeds were encapsulated with nano-fibres loaded with multi-nutrients and each seed was coated with approximately 20-25 mg of nano-fibres, dibbled into the soil and the physiological, nutritional, growth and yield responses were assessed. Seeds encapsulated with nano-fibres fortified with nutrients (NF) had registered significantly higher crop emergence percentage (C 62%; NF 99.8%), root length (C 12.3; NF 27.1 cm), shoot length (C 28.7; NF 47.7 cm), dry matter production (C 16.2; NF 27.5 g) and grain yield (C 621.6; NF 796.3 kg ha-1). All the parameters measured in nano-fibre encapsulated seeds fortified with 100% of recommended dose of nutrients (NF) were higher than uncoated control (C) seeds but comparable with 100 % conventional fertilizer applied ones (RDF). Such phenomenal increase in growth and yield parameters associated with the extensive surface area of nano-fibres that is capable of retaining and releasing nutrients in a regulated pattern and assist in improving the pulses productivity by achieving balance crop nutrition which alleviating multi-nutrient deficiencies
Beschreibung:Date Completed 18.03.2024
Date Revised 18.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.108369