Interface Bonding Properties and Mechanism of Steel Fiber and Hot Melt Adhesive via Interface Design Engineering

Steel fiber textile, which is composed of steel fibers and glass fibers, has a support layer impregnated with hot melt adhesive (HMA). During long-term service, the bonding force between the steel fiber/HMA system interfaces is poor. In order to improve the bond strength and durability of the interf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 4 vom: 30. Jan., Seite 2301-2310
1. Verfasser: Zhang, Tiancan (VerfasserIn)
Weitere Verfasser: Liu, Shengkai, Zhang, Xiaole, Pei, Xiaoyuan, Wu, Xianyan, Luo, Shigang, Xu, Wen, Xu, Zhiwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Steel fiber textile, which is composed of steel fibers and glass fibers, has a support layer impregnated with hot melt adhesive (HMA). During long-term service, the bonding force between the steel fiber/HMA system interfaces is poor. In order to improve the bond strength and durability of the interface, this paper introduced sandblasting, acid-etching, and phosphating treatments on the surface of the steel fibers. Also, the effects of these three pretreatment methods on the bond strength of the steel fiber/HMA interface were investigated. The results indicate that the interfacial bond strength of composites made from steel fibers is improved via surface treatment. Under a hydrothermal and simulated concrete pore solution environment, the durability of the steel fiber/HMA interface after sandblasting and acid-etching pretreatment is not as good as that after phosphating pretreatment. The mechanical properties of the phosphating/HMA composite were maintained at 4.56 and 2.24 times compared to those of the untreated/HMA composite, respectively. This is because the pinning effect formed by the phosphating film on the surface of steel fibers at the interface of steel fiber/HMA can serve as a physical barrier against corrosion, preventing the invasion of chloride ions and water vapor and improving the durability of the interface
Beschreibung:Date Revised 30.01.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03416