Comparative study of electro-Fenton and photoelectro-Fenton processes using a novel photocatalytic fuel cell electro-Fenton system with g-C3 N4 N-TiO2 and Ag/CNT@CF as electrodes

© 2024 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 96(2024), 1 vom: 18. Jan., Seite e10946
1. Verfasser: Ma, Boya (VerfasserIn)
Weitere Verfasser: Li, Jinying, Yang, Chunwei, Wang, Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Comparative Study Journal Article Ag loading carbon nanotubes photocatalytic fuel cell system photoelectro-Fenton Hydrogen Peroxide BBX060AN9V Iron E1UOL152H7 Water Pollutants, Chemical
Beschreibung
Zusammenfassung:© 2024 Water Environment Federation.
In this study, a novel photocatalytic fuel cell electro-Fenton (PFC-EF) system was constructed using g-C3 N4 N-TNA and Ag/CNT@CF as electrodes. The composition, structure, and morphology of the electrodes were obtained. The g-C3 N4 @N-TNA, with its 2.37 eV band gap and 100 mV photovoltage, has excellent excitation properties for sunlight. Ag/CNT@CF with abundant pores, CNT 3D nanostructures, and Ag crystals on the surface can improve the electro-Fenton efficiency. A comparative study of rhodamine B (RhB) degradation was performed in this system. It has been shown that electric fields can greatly enhance the oxidation efficiency of both anode photocatalysis and the cathode electro-Fenton process. Under optimal conditions, RhB can be completely removed by the photoelectro-Fenton (PEF) process. The energy consumption of the PEF system was obtained. The electrical energy per order (EE/O) is only 9.2 kWh/m3 ·order, which is only 16.5% of EF and 2.2% of PFC-EF system. The mineralization current efficiency (MCE) of the PEF system reached 93.3% for a 2-h reaction. Therefore, the PEF system has the advantage of saving energy. The kinetic analysis shows that the RhB removal follows a first-order kinetic law, and the reaction rate constant reaches 0.1304 min-1 , which is approximately 5.2 times larger and 4.0 times larger than the electro-Fenton and PFC-EF processes, respectively. RhB removal is a coupling multimechanism in which an electric field enhances photoelectron migration, Ag loading improves H2 O2 generation, UV light coupled with H2 O2 promotes hydroxyl radical (٠OH) generation, and the nanoconfinement effect of CNTs promotes ٠OH accumulation in favor of RhB degradation. PRACTITIONER POINTS: Novel efficiency photocatalytic fuel cell electro-Fenton system was constructed. The electric field greatly enhances the photocatalytic fuel cell electro-Fenton system. Multiple coupling mechanisms of UV/H2O2, UV/Fenton and photo-electro-Fenton have been revealed
Beschreibung:Date Completed 22.01.2024
Date Revised 24.01.2024
published: Print
Citation Status MEDLINE
ISSN:1554-7531
DOI:10.1002/wer.10946