Evolution-Based Shape and Behavior Co-Design of Virtual Agents

We introduce a novel co-design method for autonomous moving agents' shape attributes and locomotion by combining deep reinforcement learning and evolution with user control. Our main inspiration comes from evolution, which has led to wide variability and adaptation in Nature and has significant...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 12 vom: 18. Okt., Seite 7579-7591
1. Verfasser: Wang, Zhiquan (VerfasserIn)
Weitere Verfasser: Benes, Bedrich, Qureshi, Ahmed H, Mousas, Christos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367272008
003 DE-627
005 20241029231942.0
007 cr uuu---uuuuu
008 240119s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3355745  |2 doi 
028 5 2 |a pubmed24n1584.xml 
035 |a (DE-627)NLM367272008 
035 |a (NLM)38236686 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zhiquan  |e verfasserin  |4 aut 
245 1 0 |a Evolution-Based Shape and Behavior Co-Design of Virtual Agents 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce a novel co-design method for autonomous moving agents' shape attributes and locomotion by combining deep reinforcement learning and evolution with user control. Our main inspiration comes from evolution, which has led to wide variability and adaptation in Nature and has significantly improved design and behavior simultaneously. Our method takes an input agent with optional user-defined constraints, such as leg parts that should not evolve or are only within the allowed ranges of changes. It uses physics-based simulation to determine its locomotion and finds a behavior policy for the input design that is used as a baseline for comparison. The agent is randomly modified within the allowed ranges, creating a new generation of several hundred agents. The generation is trained by transferring the previous policy, which significantly speeds up the training. The best-performing agents are selected, and a new generation is formed using their crossover and mutations. The next generations are then trained until satisfactory results are reached. We show a wide variety of evolved agents, and our results show that even with only 10% of allowed changes, the overall performance of the evolved agents improves by 50%. If more significant changes to the initial design are allowed, our experiments' performance will improve even more to 150%. Our method significantly improved motion tasks without changing body structures, and it does not require considerable computation resources as it works on a single GPU and provides results by training thousands of agents within 30 minutes 
650 4 |a Journal Article 
700 1 |a Benes, Bedrich  |e verfasserin  |4 aut 
700 1 |a Qureshi, Ahmed H  |e verfasserin  |4 aut 
700 1 |a Mousas, Christos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 12 vom: 18. Okt., Seite 7579-7591  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:12  |g day:18  |g month:10  |g pages:7579-7591 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3355745  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 12  |b 18  |c 10  |h 7579-7591