Query-Oriented Micro-Video Summarization

Query-oriented micro-video summarization task aims to generate a concise sentence with two properties: (a) summarizing the main semantic of the micro-video and (b) being expressed in the form of search queries to facilitate retrieval. Despite its enormous application value in the retrieval area, thi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 26. Mai, Seite 4174-4187
1. Verfasser: Jia, Mengzhao (VerfasserIn)
Weitere Verfasser: Wei, Yinwei, Song, Xuemeng, Sun, Teng, Zhang, Min, Nie, Liqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367271990
003 DE-627
005 20240508232304.0
007 cr uuu---uuuuu
008 240119s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3355402  |2 doi 
028 5 2 |a pubmed24n1401.xml 
035 |a (DE-627)NLM367271990 
035 |a (NLM)38236680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Mengzhao  |e verfasserin  |4 aut 
245 1 0 |a Query-Oriented Micro-Video Summarization 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Query-oriented micro-video summarization task aims to generate a concise sentence with two properties: (a) summarizing the main semantic of the micro-video and (b) being expressed in the form of search queries to facilitate retrieval. Despite its enormous application value in the retrieval area, this direction has barely been explored. Previous studies of summarization mostly focus on the content summarization for traditional long videos. Directly applying these studies is prone to gain unsatisfactory results because of the unique features of micro-videos and queries: diverse entities and complex scenes within a short time, semantic gaps between modalities, and various queries in distinct expressions. To specifically adapt to these characteristics, we propose a query-oriented micro-video summarization model, dubbed QMS. It employs an encoder-decoder-based transformer architecture as the skeleton. The multi-modal (visual and textual) signals are passed through two modal-specific encoders to obtain their representations, followed by an entity-aware representation learning module to identify and highlight critical entity information. As to the optimization, regarding the large semantic gaps between modalities, we assign different confidence scores according to their semantic relevance in the optimization process. Additionally, we develop a novel strategy to sample the effective target query among the diverse query set with various expressions. Extensive experiments demonstrate the superiority of the QMS scheme, on both the summarization and retrieval tasks, over several state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wei, Yinwei  |e verfasserin  |4 aut 
700 1 |a Song, Xuemeng  |e verfasserin  |4 aut 
700 1 |a Sun, Teng  |e verfasserin  |4 aut 
700 1 |a Zhang, Min  |e verfasserin  |4 aut 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 26. Mai, Seite 4174-4187  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:26  |g month:05  |g pages:4174-4187 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3355402  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 26  |c 05  |h 4174-4187