Content-Aware Rectified Activation for Zero-Shot Fine-Grained Image Retrieval

Fine-grained image retrieval mainly focuses on learning salient features from the seen subcategories as discriminative embedding while neglecting the problems behind zero-shot settings. We argue that retrieving fine-grained objects from unseen subcategories may rely on more diverse clues, which are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 26. Mai, Seite 4366-4380
1. Verfasser: Wang, Shijie (VerfasserIn)
Weitere Verfasser: Chang, Jianlong, Wang, Zhihui, Li, Haojie, Ouyang, Wanli, Tian, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36727194X
003 DE-627
005 20240508232304.0
007 cr uuu---uuuuu
008 240119s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3355461  |2 doi 
028 5 2 |a pubmed24n1401.xml 
035 |a (DE-627)NLM36727194X 
035 |a (NLM)38236683 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shijie  |e verfasserin  |4 aut 
245 1 0 |a Content-Aware Rectified Activation for Zero-Shot Fine-Grained Image Retrieval 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fine-grained image retrieval mainly focuses on learning salient features from the seen subcategories as discriminative embedding while neglecting the problems behind zero-shot settings. We argue that retrieving fine-grained objects from unseen subcategories may rely on more diverse clues, which are easily restrained by the salient features learnt from seen subcategories. To address this issue, we propose a novel Content-aware Rectified Activation model, which enables this model to suppress the activation on salient regions while preserving their discrimination, and spread activation to adjacent non-salient regions, thus mining more diverse discriminative features for retrieving unseen subcategories. Specifically, we construct a content-aware rectified prototype (CARP) by perceiving semantics of salient regions. CARP acts as a channel-wise non-destructive activation upper bound and can be selectively used to suppress salient regions for obtaining the rectified features. Moreover, two regularizations are proposed: 1) a semantic coherency constraint that imposes a restriction on semantic coherency of CARP and salient regions, aiming at propagating the discriminative ability of salient regions to CARP, 2) a feature-navigated constraint to further guide the model to adaptively balance the discrimination power of rectified features and the suppression power of salient features. Experimental results on fine-grained and product retrieval benchmarks demonstrate that our method consistently outperforms the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Chang, Jianlong  |e verfasserin  |4 aut 
700 1 |a Wang, Zhihui  |e verfasserin  |4 aut 
700 1 |a Li, Haojie  |e verfasserin  |4 aut 
700 1 |a Ouyang, Wanli  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 26. Mai, Seite 4366-4380  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:26  |g month:05  |g pages:4366-4380 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3355461  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 26  |c 05  |h 4366-4380