BadLabel : A Robust Perspective on Evaluating and Enhancing Label-Noise Learning

Label-noise learning (LNL) aims to increase the model's generalization given training data with noisy labels. To facilitate practical LNL algorithms, researchers have proposed different label noise types, ranging from class-conditional to instance-dependent noises. In this paper, we introduce a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 18. Juni, Seite 4398-4409
1. Verfasser: Zhang, Jingfeng (VerfasserIn)
Weitere Verfasser: Song, Bo, Wang, Haohan, Han, Bo, Liu, Tongliang, Liu, Lei, Sugiyama, Masashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367271915
003 DE-627
005 20250305165315.0
007 cr uuu---uuuuu
008 240119s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3355425  |2 doi 
028 5 2 |a pubmed25n1223.xml 
035 |a (DE-627)NLM367271915 
035 |a (NLM)38236681 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jingfeng  |e verfasserin  |4 aut 
245 1 0 |a BadLabel  |b A Robust Perspective on Evaluating and Enhancing Label-Noise Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Label-noise learning (LNL) aims to increase the model's generalization given training data with noisy labels. To facilitate practical LNL algorithms, researchers have proposed different label noise types, ranging from class-conditional to instance-dependent noises. In this paper, we introduce a novel label noise type called BadLabel, which can significantly degrade the performance of existing LNL algorithms by a large margin. BadLabel is crafted based on the label-flipping attack against standard classification, where specific samples are selected and their labels are flipped to other labels so that the loss values of clean and noisy labels become indistinguishable. To address the challenge posed by BadLabel, we further propose a robust LNL method that perturbs the labels in an adversarial manner at each epoch to make the loss values of clean and noisy labels again distinguishable. Once we select a small set of (mostly) clean labeled data, we can apply the techniques of semi-supervised learning to train the model accurately. Empirically, our experimental results demonstrate that existing LNL algorithms are vulnerable to the newly introduced BadLabel noise type, while our proposed robust LNL method can effectively improve the generalization performance of the model under various types of label noise. The new dataset of noisy labels and the source codes of robust LNL algorithms are available at https://github.com/zjfheart/BadLabels 
650 4 |a Journal Article 
700 1 |a Song, Bo  |e verfasserin  |4 aut 
700 1 |a Wang, Haohan  |e verfasserin  |4 aut 
700 1 |a Han, Bo  |e verfasserin  |4 aut 
700 1 |a Liu, Tongliang  |e verfasserin  |4 aut 
700 1 |a Liu, Lei  |e verfasserin  |4 aut 
700 1 |a Sugiyama, Masashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 18. Juni, Seite 4398-4409  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:18  |g month:06  |g pages:4398-4409 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3355425  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 18  |c 06  |h 4398-4409