BadLabel : A Robust Perspective on Evaluating and Enhancing Label-Noise Learning

Label-noise learning (LNL) aims to increase the model's generalization given training data with noisy labels. To facilitate practical LNL algorithms, researchers have proposed different label noise types, ranging from class-conditional to instance-dependent noises. In this paper, we introduce a...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 18. Juni, Seite 4398-4409
Auteur principal: Zhang, Jingfeng (Auteur)
Autres auteurs: Song, Bo, Wang, Haohan, Han, Bo, Liu, Tongliang, Liu, Lei, Sugiyama, Masashi
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
Description
Résumé:Label-noise learning (LNL) aims to increase the model's generalization given training data with noisy labels. To facilitate practical LNL algorithms, researchers have proposed different label noise types, ranging from class-conditional to instance-dependent noises. In this paper, we introduce a novel label noise type called BadLabel, which can significantly degrade the performance of existing LNL algorithms by a large margin. BadLabel is crafted based on the label-flipping attack against standard classification, where specific samples are selected and their labels are flipped to other labels so that the loss values of clean and noisy labels become indistinguishable. To address the challenge posed by BadLabel, we further propose a robust LNL method that perturbs the labels in an adversarial manner at each epoch to make the loss values of clean and noisy labels again distinguishable. Once we select a small set of (mostly) clean labeled data, we can apply the techniques of semi-supervised learning to train the model accurately. Empirically, our experimental results demonstrate that existing LNL algorithms are vulnerable to the newly introduced BadLabel noise type, while our proposed robust LNL method can effectively improve the generalization performance of the model under various types of label noise. The new dataset of noisy labels and the source codes of robust LNL algorithms are available at https://github.com/zjfheart/BadLabels
Description:Date Revised 08.05.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2024.3355425