Inverse-Like Antagonistic Scene Text Spotting via Reading-Order Estimation and Dynamic Sampling

Scene text spotting is a challenging task, especially for inverse-like scene text, which has complex layouts, e.g., mirrored, symmetrical, or retro-flexed. In this paper, we propose a unified end-to-end trainable inverse-like antagonistic text spotting framework dubbed IATS, which can effectively sp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 15., Seite 825-839
1. Verfasser: Zhang, Shi-Xue (VerfasserIn)
Weitere Verfasser: Yang, Chun, Zhu, Xiaobin, Zhou, Hongyang, Wang, Hongfa, Yin, Xu-Cheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367223740
003 DE-627
005 20240122232044.0
007 cr uuu---uuuuu
008 240118s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3352399  |2 doi 
028 5 2 |a pubmed24n1267.xml 
035 |a (DE-627)NLM367223740 
035 |a (NLM)38231817 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Shi-Xue  |e verfasserin  |4 aut 
245 1 0 |a Inverse-Like Antagonistic Scene Text Spotting via Reading-Order Estimation and Dynamic Sampling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene text spotting is a challenging task, especially for inverse-like scene text, which has complex layouts, e.g., mirrored, symmetrical, or retro-flexed. In this paper, we propose a unified end-to-end trainable inverse-like antagonistic text spotting framework dubbed IATS, which can effectively spot inverse-like scene texts without sacrificing general ones. Specifically, we propose an innovative reading-order estimation module (REM) that extracts reading-order information from the initial text boundary generated by an initial boundary module (IBM). To optimize and train REM, we propose a joint reading-order estimation loss ( LRE ) consisting of a classification loss, an orthogonality loss, and a distribution loss. With the help of IBM, we can divide the initial text boundary into two symmetric control points and iteratively refine the new text boundary using a lightweight boundary refinement module (BRM) for adapting to various shapes and scales. To alleviate the incompatibility between text detection and recognition, we propose a dynamic sampling module (DSM) with a thin-plate spline that can dynamically sample appropriate features for recognition in the detected text region. Without extra supervision, the DSM can proactively learn to sample appropriate features for text recognition through the gradient returned by the recognition module. Extensive experiments on both challenging scene text and inverse-like scene text datasets demonstrate that our method achieves superior performance both on irregular and inverse-like text spotting 
650 4 |a Journal Article 
700 1 |a Yang, Chun  |e verfasserin  |4 aut 
700 1 |a Zhu, Xiaobin  |e verfasserin  |4 aut 
700 1 |a Zhou, Hongyang  |e verfasserin  |4 aut 
700 1 |a Wang, Hongfa  |e verfasserin  |4 aut 
700 1 |a Yin, Xu-Cheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 15., Seite 825-839  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:15  |g pages:825-839 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3352399  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 15  |h 825-839