Animatable Implicit Neural Representations for Creating Realistic Avatars From Videos

This paper addresses the challenge of reconstructing an animatable human model from a multi-view video. Some recent works have proposed to decompose a non-rigidly deforming scene into a canonical neural radiance field and a set of deformation fields that map observation-space points to the canonical...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 23. Mai, Seite 4147-4159
1. Verfasser: Zhou, Xiaowei (VerfasserIn)
Weitere Verfasser: Peng, Sida, Xu, Zhen, Dong, Junting, Wang, Qianqian, Zhang, Shangzhan, Shuai, Qing, Bao, Hujun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367223589
003 DE-627
005 20240508232303.0
007 cr uuu---uuuuu
008 240118s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3355287  |2 doi 
028 5 2 |a pubmed24n1401.xml 
035 |a (DE-627)NLM367223589 
035 |a (NLM)38231799 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Xiaowei  |e verfasserin  |4 aut 
245 1 0 |a Animatable Implicit Neural Representations for Creating Realistic Avatars From Videos 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the challenge of reconstructing an animatable human model from a multi-view video. Some recent works have proposed to decompose a non-rigidly deforming scene into a canonical neural radiance field and a set of deformation fields that map observation-space points to the canonical space, thereby enabling them to learn the dynamic scene from images. However, they represent the deformation field as translational vector field or SE(3) field, which makes the optimization highly under-constrained. Moreover, these representations cannot be explicitly controlled by input motions. Instead, we introduce blend weight fields to produce the deformation fields. Based on the skeleton-driven deformation, blend weight fields are used with 3D human skeletons to generate observation-to-canonical and canonical-to-observation correspondences. Since 3D human skeletons are more observable, they can regularize the learning of deformation fields. Moreover, the blend weight fields can be combined with input skeletal motions to generate new deformation fields to animate the human model. To improve the quality of human modeling, we further represent the human geometry as a signed distance field in the canonical space. Additionally, a neural point displacement field is introduced to enhance the capability of the blend weight field on modeling detailed human motions. Experiments show that our approach significantly outperforms recent human modeling methods 
650 4 |a Journal Article 
700 1 |a Peng, Sida  |e verfasserin  |4 aut 
700 1 |a Xu, Zhen  |e verfasserin  |4 aut 
700 1 |a Dong, Junting  |e verfasserin  |4 aut 
700 1 |a Wang, Qianqian  |e verfasserin  |4 aut 
700 1 |a Zhang, Shangzhan  |e verfasserin  |4 aut 
700 1 |a Shuai, Qing  |e verfasserin  |4 aut 
700 1 |a Bao, Hujun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 23. Mai, Seite 4147-4159  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:23  |g month:05  |g pages:4147-4159 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3355287  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 23  |c 05  |h 4147-4159