Graph Transformer GANs With Graph Masked Modeling for Architectural Layout Generation

We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations in an end-to-end fashion for challenging graph-constrained architectural layout generation tasks. The proposed graph-Transformer-based generator includes a novel graph Transformer enco...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 02. Juni, Seite 4298-4313
1. Verfasser: Tang, Hao (VerfasserIn)
Weitere Verfasser: Shao, Ling, Sebe, Nicu, Van Gool, Luc
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article