A Hybrid Nanoadjuvant Simultaneously Depresses PD-L1/TGF-β1 and Activates cGAS-STING Pathway to Overcome Radio-Immunotherapy Resistance
© 2024 Wiley‐VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 31. Apr., Seite e2304328 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article PD‐L1/TGF‐β1 cGAS‐STING hypoxia reversion nanoadjuvant radio‐immunotherapy B7-H1 Antigen Manganese Compounds Oxides Transforming Growth Factor beta1 plus... |
Résumé: | © 2024 Wiley‐VCH GmbH. Currently, certain cancer patients exhibit resistance to radiotherapy due to reduced DNA damage under hypoxic conditions and acquired immune tolerance triggered by transforming growth factor-β1 (TGF-β1) and membrane-localized programmed death ligand-1 (PD-L1). Meanwhile, cytoplasm-distributed PD-L1 induces radiotherapy resistance through accelerating DNA damage repair (DDR). However, the disability of clinically used PD-L1 antibodies in inhibiting cytoplasm-distributed PD-L1 limits their effectiveness. Therefore, a nanoadjuvant is developed to sensitize cancer to radiotherapy via multi-level immunity activation through depressing PD-L1 and TGF-β1 by triphenylphosphine-derived metformin, and activating the cGAS-STING pathway by generating Mn2+ from MnO2 and producing more dsDNA via reversing tumor hypoxia and impairing DDR. Thus, Tpp-MetMnO2@Alb effectively enhances the efficiency of radiotherapy to inhibit the progression of irradiated local and abscopal tumors and tumor lung metastases, offering a long-term memory of antitumor immunity without discernible side effects. Overall, Tpp-Met@MnO2@Alb has the potential to be clinically applied for overcoming radio-immunotherapy resistance |
---|---|
Description: | Date Completed 15.04.2024 Date Revised 24.04.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202304328 |