Efficient Distortion-Free Neural Projector Deblurring in Dynamic Projection Mapping

Dynamic Projection Mapping (DPM) necessitates geometric compensation of the projection image based on the position and orientation of moving objects. Additionally, the projector's shallow depth of field results in pronounced defocus blur even with minimal object movement. Achieving delay-free D...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 12 vom: 16. Dez., Seite 7544-7557
1. Verfasser: Kageyama, Yuta (VerfasserIn)
Weitere Verfasser: Iwai, Daisuke, Sato, Kosuke
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM367179741
003 DE-627
005 20250305164055.0
007 cr uuu---uuuuu
008 240116s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3354957  |2 doi 
028 5 2 |a pubmed25n1223.xml 
035 |a (DE-627)NLM367179741 
035 |a (NLM)38227414 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kageyama, Yuta  |e verfasserin  |4 aut 
245 1 0 |a Efficient Distortion-Free Neural Projector Deblurring in Dynamic Projection Mapping 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dynamic Projection Mapping (DPM) necessitates geometric compensation of the projection image based on the position and orientation of moving objects. Additionally, the projector's shallow depth of field results in pronounced defocus blur even with minimal object movement. Achieving delay-free DPM with high image quality requires real-time implementation of geometric compensation and projector deblurring. To meet this demand, we propose a framework comprising two neural components: one for geometric compensation and another for projector deblurring. The former component warps the image by detecting the optical flow of each pixel in both the projection and captured images. The latter component performs real-time sharpening as needed. Ideally, our network's parameters should be trained on data acquired in an actual environment. However, training the network from scratch while executing DPM, which demands real-time image generation, is impractical. Therefore, the network must undergo pre-training. Unfortunately, there are no publicly available large real datasets for DPM due to the diverse image quality degradation patterns. To address this challenge, we propose a realistic synthetic data generation method that numerically models geometric distortion and defocus blur in real-world DPM. Through exhaustive experiments, we have confirmed that the model trained on the proposed dataset achieves projector deblurring in the presence of geometric distortions with a quality comparable to state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Iwai, Daisuke  |e verfasserin  |4 aut 
700 1 |a Sato, Kosuke  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 12 vom: 16. Dez., Seite 7544-7557  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:12  |g day:16  |g month:12  |g pages:7544-7557 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3354957  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 12  |b 16  |c 12  |h 7544-7557