Boosting Factorization Machines via Saliency-Guided Mixup

Factorization machines (FMs) are widely used in recommender systems due to their adaptability and ability to learn from sparse data. However, for the ubiquitous non-interactive features in sparse data, existing FMs can only estimate the parameters corresponding to these features via the inner produc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 6 vom: 16. Mai, Seite 4443-4459
1. Verfasser: Wu, Chenwang (VerfasserIn)
Weitere Verfasser: Lian, Defu, Ge, Yong, Zhou, Min, Chen, Enhong, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM367179687
003 DE-627
005 20240508232302.0
007 cr uuu---uuuuu
008 240116s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3354910  |2 doi 
028 5 2 |a pubmed24n1401.xml 
035 |a (DE-627)NLM367179687 
035 |a (NLM)38227418 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Chenwang  |e verfasserin  |4 aut 
245 1 0 |a Boosting Factorization Machines via Saliency-Guided Mixup 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Factorization machines (FMs) are widely used in recommender systems due to their adaptability and ability to learn from sparse data. However, for the ubiquitous non-interactive features in sparse data, existing FMs can only estimate the parameters corresponding to these features via the inner product of their embeddings. Undeniably, they cannot learn the direct interactions of these features, which limits the model's expressive power. To this end, we first present MixFM, inspired by Mixup, to generate auxiliary training data to boost FMs. Unlike existing augmentation strategies that require labor costs and expertise to collect additional information such as position and fields, these augmented data are only by the convex combination of the raw ones without any professional knowledge support. More importantly, if non-interactive features exist in parent samples to be mixed respectively, MixFM will establish their direct interactions. Second, considering that MixFM may generate redundant or even detrimental instances, we further put forward a novel Factorization Machine powered by Saliency-guided Mixup (denoted as SMFM). Guided by the customized saliency, SMFM can generate more informative neighbor data. Through theoretical analysis, we prove that the proposed methods minimize the upper bound of the generalization error, which positively enhances FMs. Finally, extensive experiments on seven datasets confirm that our approaches are superior to baselines. Notably, the results also show that "poisoning" mixed data benefits the FM variants 
650 4 |a Journal Article 
700 1 |a Lian, Defu  |e verfasserin  |4 aut 
700 1 |a Ge, Yong  |e verfasserin  |4 aut 
700 1 |a Zhou, Min  |e verfasserin  |4 aut 
700 1 |a Chen, Enhong  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 6 vom: 16. Mai, Seite 4443-4459  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:6  |g day:16  |g month:05  |g pages:4443-4459 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3354910  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 6  |b 16  |c 05  |h 4443-4459