Heterojunction-Induced Rapid Transformation of Ni3+/Ni2+ Sites which Mediates Urea Oxidation for Energy-Efficient Hydrogen Production
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 18 vom: 01. Mai, Seite e2311766 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Ni2P4O12/NiTe Ni3+ sites nickel‐based electrocatalysts urea oxidation coupled hydrogen production water electrolysis |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Water electrolysis is an environmentally-friendly strategy for hydrogen production but suffers from significant energy consumption. Substituting urea oxidation reaction (UOR) with lower theoretical voltage for water oxidation reaction adopting nickel-based electrocatalysts engenders reduced energy consumption for hydrogen production. The main obstacle remains strong interaction between accumulated Ni3+ and *COO in the conventional Ni3+-catalyzing pathway. Herein, a novel Ni3+/Ni2+ mediated pathway for UOR via constructing a heterojunction of nickel metaphosphate and nickel telluride (Ni2P4O12/NiTe), which efficiently lowers the energy barrier of UOR and avoids the accumulation of Ni3+ and excessive adsorption of *COO on the electrocatalysts, is developed. As a result, Ni2P4O12/NiTe demonstrates an exceptionally low potential of 1.313 V to achieve a current density of 10 mA cm-2 toward efficient urea oxidation reaction while simultaneously showcases an overpotential of merely 24 mV at 10 mA cm-2 for hydrogen evolution reaction. Constructing urea electrolysis electrolyzer using Ni2P4O12/NiTe at both sides attains 100 mA cm-2 at a low cell voltage of 1.475 V along with excellent stability over 500 h accompanied with nearly 100% Faradic efficiency |
---|---|
Beschreibung: | Date Revised 02.05.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202311766 |