GUESS : GradUally Enriching SyntheSis for Text-Driven Human Motion Generation

In this article, we propose a novel cascaded diffusion-based generative framework for text-driven human motion synthesis, which exploits a strategy named GradUally Enriching SyntheSis (GUESS as its abbreviation). The strategy sets up generation objectives by grouping body joints of detailed skeleton...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 12 vom: 31. Okt., Seite 7518-7530
1. Verfasser: Gao, Xuehao (VerfasserIn)
Weitere Verfasser: Yang, Yang, Xie, Zhenyu, Du, Shaoyi, Sun, Zhongqian, Wu, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article