On the sensitivity of computed partial charges toward basis set and (exchange-)correlation treatment

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 45(2024), 13 vom: 15. Mai, Seite 1017-1032
Auteur principal: Mehta, Nisha (Auteur)
Autres auteurs: Martin, Jan M L
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article basis set convergence coupled cluster density functional theory double hybrids electron correlation partial charges
LEADER 01000caa a22002652c 4500
001 NLM367070650
003 DE-627
005 20250305162627.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27294  |2 doi 
028 5 2 |a pubmed25n1223.xml 
035 |a (DE-627)NLM367070650 
035 |a (NLM)38216516 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mehta, Nisha  |e verfasserin  |4 aut 
245 1 0 |a On the sensitivity of computed partial charges toward basis set and (exchange-)correlation treatment 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a Partial charges are a central concept in general chemistry and chemical biology, yet dozens of different computational definitions exist. In prior work [Cho et al., ChemPhysChem 21, 688-696 (2020)], we showed that these can be reduced to at most three 'principal components of ionicity'. The present study addressed the dependence of computed partial charges q on 1-particle basis set and (for WFT methods) n -particle correlation treatment or (for DFT methods) exchange-correlation functional, for several representative partial charge definitions such as QTAIM, Hirshfeld, Hirshfeld-I, HLY (electrostatic), NPA, and GAPT. Our findings show that semi-empirical double hybrids can closely approach the CCSD(T) 'gold standard' for this property. In fact, owing to an error compensation in MP2, CCSD partial charges are further away from CCSD(T) than is MP2. The nonlocal correlation is important, especially when there is a substantial amount of nonlocal exchange. Employing range separation proves to be "mostly" not advantageous, while global hybrids perform optimally for 20%-30% Hartree-Fock exchange across all charge types. Basis set convergence analysis shows that an augmented triple-zeta heavy-aug-cc-pV(T+d)Z basis set or a partially augmented jun-cc-pV(T+d)Z basis set is sufficient for Hirshfeld, Hirshfeld-I, HLY, and GAPT charges. In contrast, QTAIM and NPA display slower basis set convergence. It is noteworthy that for both NPA and QTAIM, HF exhibits markedly slower basis set convergence than the correlation components of MP2 and CCSD. Triples corrections in CCSD(T), denoted as CCSD(T)-CCSD, exhibit even faster basis set convergence 
650 4 |a Journal Article 
650 4 |a basis set convergence 
650 4 |a coupled cluster 
650 4 |a density functional theory 
650 4 |a double hybrids 
650 4 |a electron correlation 
650 4 |a partial charges 
700 1 |a Martin, Jan M L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 13 vom: 15. Mai, Seite 1017-1032  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:45  |g year:2024  |g number:13  |g day:15  |g month:05  |g pages:1017-1032 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 13  |b 15  |c 05  |h 1017-1032