Solid Interfaces for the Garnet Electrolytes

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 06. Apr., Seite e2306111
1. Verfasser: Feng, Wuliang (VerfasserIn)
Weitere Verfasser: Zhao, Yufeng, Xia, Yongyao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review garnet interface lithium dendrite solid‐state stability
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Solid-state electrolytes (SSEs) have attracted extensive interests due to the advantages in developing secondary batteries with high energy density and outstanding safety. Possessing high ionic conductivity and the lowest reduction potential among the state-of-the-art SSEs, the garnet type SSE is one of the most promising candidates to achieve high performance solid-state lithium batteries (SSLBs). However, the elastic modulus of the garnet electrolyte leads to deteriorated interfacial contacts, and the increasing in electronic conduction at either anode/garnet interface or grain boundary results in Li dendrite growth. Here, recent developments of the solid interfaces for the garnet electrolytes, including the strategies of Li dendrite suppression and interfacial chemical/electrochemical/mechanical stabilizations are presented. A new viewpoint of the double edges of interfacial lithiophobicity is proposed, and the rational design of the interphases, as well as effective stacking methods of the garnet-based SSLBs are summarized. Moreover, practical roles of the garnet electrolyte in SSLB industry are also discussed. This work delivers insights into the solid interfaces for the garnet electrolytes, which provides not only the promotion of the garnet-based SSLBs, but also a comprehensive understanding of the interfacial stabilization for the whole SSE family
Beschreibung:Date Revised 11.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202306111