A method based on improved ant colony algorithm feature selection combined with GWO-SVR model for predicting chlorophyll-a concentration in Wuliangsu Lake

Chlorophyll-a (Chl-a) is an important parameter in water bodies. Due to the complexity of optics in water bodies, it is difficult to accurately predict Chl-a concentrations in water bodies by current traditional methods. In this paper, using Sentinel-2 remote sensing images as the data source combin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 1 vom: 07. Jan., Seite 20-37
1. Verfasser: Wu, Chenhao (VerfasserIn)
Weitere Verfasser: Fu, Xueliang, Li, Honghui, Hu, Hua, Li, Xue, Zhang, Liqian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Chlorophyll A YF5Q9EJC8Y Chlorophyll 1406-65-1 Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM367055333
003 DE-627
005 20250305162416.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2023.410  |2 doi 
028 5 2 |a pubmed25n1223.xml 
035 |a (DE-627)NLM367055333 
035 |a (NLM)38214984 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Chenhao  |e verfasserin  |4 aut 
245 1 2 |a A method based on improved ant colony algorithm feature selection combined with GWO-SVR model for predicting chlorophyll-a concentration in Wuliangsu Lake 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.01.2024 
500 |a Date Revised 15.01.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Chlorophyll-a (Chl-a) is an important parameter in water bodies. Due to the complexity of optics in water bodies, it is difficult to accurately predict Chl-a concentrations in water bodies by current traditional methods. In this paper, using Sentinel-2 remote sensing images as the data source combined with measured data, taking Wuliangsu Lake as the study area, a new intelligent algorithm is proposed for prediction of Chl-a concentration, which uses the adaptive ant colony exhaustive optimization algorithm (A-ACEO) for feature selection and the gray wolf optimization algorithm (GWO) to optimize support vector regression (SVR) to achieve Chl-a concentration prediction. The ant colony optimization algorithm is improved to select remote sensing feature bands for Chl-a concentration by introducing relevant optimization strategies. The GWO-SVR model is built by optimizing SVR using GWO with the selected feature bands as input and comparing it with the traditional SVR model. The results show that the usage of feature bands selected by the presented A-ACEO algorithm as inputs can effectively reduce complexity and improve the prediction performance of the model, under the condition of the same model, which can provide valuable references for monitoring the Chl-a concentration in Wuliangsu Lake 
650 4 |a Journal Article 
650 7 |a Chlorophyll A  |2 NLM 
650 7 |a YF5Q9EJC8Y  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Fu, Xueliang  |e verfasserin  |4 aut 
700 1 |a Li, Honghui  |e verfasserin  |4 aut 
700 1 |a Hu, Hua  |e verfasserin  |4 aut 
700 1 |a Li, Xue  |e verfasserin  |4 aut 
700 1 |a Zhang, Liqian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 89(2024), 1 vom: 07. Jan., Seite 20-37  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:89  |g year:2024  |g number:1  |g day:07  |g month:01  |g pages:20-37 
856 4 0 |u http://dx.doi.org/10.2166/wst.2023.410  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 89  |j 2024  |e 1  |b 07  |c 01  |h 20-37