Single-Layer Organic Light-Emitting Diode with Trap-Free Host Beats Power Efficiency and Lifetime of Multilayer Devices
© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 16 vom: 01. Apr., Seite e2311892 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article charge transport device physics organic light‐emitting diodes thermally activated delayed fluorescence |
Résumé: | © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. Organic light-emitting diodes (OLEDs) employing a single active layer potentially offer a number of benefits compared to multilayer devices; reduced number of materials and deposition steps, potential for solution processing, and reduced operating voltage due to the absence of heterojunctions. However, for single-layer OLEDs to achieve efficiencies approaching those of multilayer devices, balanced charge transport is a prerequisite. This requirement excludes many efficient emitters based on thermally activated delayed fluorescence (TADF) that exhibit electron trapping, such as the green-emitting bis(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)methanone (DMAC-BP). By employing a recently developed trap-free large band gap material as a host for DMAC-BP, nearly balanced charge transport is achieved. The single-layer OLED reaches an external quantum efficiency (EQE) of 19.6%, which is comparable to the reported EQEs of 18.9-21% for multilayer devices, but achieves a record power efficiency for DMAC-BP OLEDs of 82 lm W-1, clearly surpassing the reported multilayer power efficiencies of 52.9-59 lm W-1. In addition, the operational stability is greatly improved compared to multilayer devices and the use of conventional host materials in combination with DMAC-BP as an emitter. Next to the obvious reduction in production costs, single-layer OLEDs therefore also offer the advantage of reduced energy consumption and enhanced stability |
---|---|
Description: | Date Revised 18.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202311892 |