Polymer-Surface-Mediated Mechanochemical Reaction for Rapid and Scalable Manufacture of Perovskite QD Phosphors
© 2024 Wiley‐VCH GmbH.
| Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 14 vom: 01. Apr., Seite e2310521 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , , , , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2024
|
| Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
| Schlagworte: | Journal Article all‐solid mechanochemical synthesis lighting perovskite QDs phosphors rapid manufacture |
| Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Perovskite quantum dots (QDs) have been considered new-generation emitters for lighting and displays due to their high photoluminescence (PL) efficiency, and pure color. However, their commercialization process is currently hindered by the challenge of mass production in a quick and environmentally friendly manner. In this study, a polymer-surface-mediated mechanochemical reaction (PMR) is proposed to prepare perovskite QDs using a high-speed multifunction grinder for the first time. PMR possesses two distinctive features: i) The ultra-high rotating speed (>15 000 rpm) of the grinder facilitates the rapid conversion of the precursor to perovskite; ii) The surface-rich polymer particulate ensures QDs with high dispersity, avoiding QD aggregation-induced PL quenching. Therefore, PMR can successfully manufacture green perovskite QDs with a high PL quantum yield (PLQY) exceeding 90% in a highly material- (100% yield), time- (1 kg min-1), and effort- (solvent-free) efficient manner. Moreover, the PMR demonstrates remarkable versatility, including synthesizing by various polymers and producing diverse colored and Pb-free phosphors. Importantly, these phosphors featuring a combination of polymer and perovskite, are facilely processed into various solid emitters. The proposed rapid, green, and scalable approach has great potential to accelerate the commercialization of perovskite QDs |
|---|---|
| Beschreibung: | Date Revised 04.04.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1521-4095 |
| DOI: | 10.1002/adma.202310521 |