Efficiency Roll-Off in Light-Emitting Electrochemical Cells

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 01. Apr., Seite e2310156
1. Verfasser: Zhang, Xiaoying (VerfasserIn)
Weitere Verfasser: Ràfols-Ribé, Joan, Mindemark, Jonas, Tang, Shi, Lindh, Mattias, Gracia-Espino, Eduardo, Larsen, Christian, Edman, Ludvig
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article efficiency roll‐off light‐emitting electrochemical cell p‐n junction position singlet‐polaron quenching singlet‐singlet quenching
Beschreibung
Zusammenfassung:© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Understanding "efficiency roll-off" (i.e., the drop in emission efficiency with increasing current) is critical if efficient and bright emissive technologies are to be rationally designed. Emerging light-emitting electrochemical cells (LECs) can be cost- and energy-efficiently fabricated by ambient-air printing by virtue of the in situ formation of a p-n junction doping structure. However, this in situ doping transformation renders a meaningful efficiency analysis challenging. Herein, a method for separation and quantification of major LEC loss factors, notably the outcoupling efficiency and exciton quenching, is presented. Specifically, the position of the emissive p-n junction in common singlet-exciton emitting LECs is measured to shift markedly with increasing current, and the influence of this shift on the outcoupling efficiency is quantified. It is further verified that the LEC-characteristic high electrochemical-doping concentration renders singlet-polaron quenching (SPQ) significant already at low drive current density, but also that SPQ increases super-linearly with increasing current, because of increasing polaron density in the p-n junction region. This results in that SPQ dominates singlet-singlet quenching for relevant current densities, and significantly contributes to the efficiency roll-off. This method for deciphering the LEC efficiency roll-off can contribute to a rational realization of all-printed LEC devices that are efficient at highluminance
Beschreibung:Date Revised 11.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202310156