Negative Photoconductivity of Fe3GeTe2 Crystal with Native Heterostructure for Ultraviolet to Terahertz Ultra-Broadband Photodetection

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 15 vom: 01. Apr., Seite e2305709
1. Verfasser: Ma, Suping (VerfasserIn)
Weitere Verfasser: Li, Guanghao, Li, Zhuo, Wang, Tingyuan, Zhang, Yawen, Li, Ningning, Chen, Haisheng, Zhang, Nan, Liu, Weiwei, Huang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Fe3GeTe2/O‐Fe3GeTe2 high responsivity negative photoconductivity photodetector ultra‐broadband
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Gaining insight into the photoelectric behavior of ferromagnetic materials is significant for comprehensively grasping their intrinsic properties and broadening future application fields. Here, through a specially designed Fe3GeTe2/O-Fe3GeTe2 heterostructure, first, the broad-spectrum negative photoconductivity phenomenon of ferromagnetic nodal line semimetal Fe3GeTe2 is reported that covers UV-vis-infrared-terahertz bands (355 nm to 3000 µm), promising to compensate for the inadequacies of traditional optoelectronic devices. The significant suppression of photoexcitation conductivity is revealed to arise from the semimetal/oxidation (sMO) interface-assisted dual-response mechanism, in which the electron excitation origins from the semiconductor photoconductivity effect in high-energy photon region, and semimetal topological band-transition in low-energy photon region. High responsivities ranging from 103 to 100 mA W-1 are acquired within ultraviolet-terahertz bands under ±0.1 V bias voltage at room temperature. Notably, the responsivity of 2.572 A W-1 at 3000 µm (0.1 THz) and the low noise equivalent power of 26 pW Hz-1/2 surpass most state-of-the-art mainstream terahertz detectors. This research provides a new perspective for revealing the photoelectric conversion properties of Fe3GeTe2 crystal and paves the way for the development of spin-optoelectronic devices
Beschreibung:Date Revised 11.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202305709