Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 16 vom: 01. Apr., Seite e2312746
1. Verfasser: Zhang, Haoran (VerfasserIn)
Weitere Verfasser: Wang, Haijian, Cao, Xiqian, Chen, Mengshan, Liu, Yuelong, Zhou, Yingtang, Huang, Ming, Xia, Lu, Wang, Yan, Li, Tingshuai, Zheng, Dongdong, Luo, Yongsong, Sun, Shengjun, Zhao, Xue, Sun, Xuping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review electrolytic cell green synthesis ammonia nitrate reduction theoretical calculation
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts
Beschreibung:Date Revised 18.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202312746