A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation

Deep learning models for medical image segmentation can fail unexpectedly and spectacularly for pathological cases and images acquired at different centers than training images, with labeling errors that violate expert knowledge. Such errors undermine the trustworthiness of deep learning models for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 10. Mai, Seite 3784-3795
1. Verfasser: Fidon, Lucas (VerfasserIn)
Weitere Verfasser: Aertsen, Michael, Kofler, Florian, Bink, Andrea, David, Anna L, Deprest, Thomas, Emam, Doaa, Guffens, Frederic, Jakab, Andras, Kasprian, Gregor, Kienast, Patric, Melbourne, Andrew, Menze, Bjoern, Mufti, Nada, Pogledic, Ivana, Prayer, Daniela, Stuempflen, Marlene, Van Elslander, Esther, Ourselin, Sebastien, Deprest, Jan, Vercauteren, Tom
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM366888684
003 DE-627
005 20250103231831.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3346330  |2 doi 
028 5 2 |a pubmed24n1650.xml 
035 |a (DE-627)NLM366888684 
035 |a (NLM)38198270 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fidon, Lucas  |e verfasserin  |4 aut 
245 1 2 |a A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2024 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deep learning models for medical image segmentation can fail unexpectedly and spectacularly for pathological cases and images acquired at different centers than training images, with labeling errors that violate expert knowledge. Such errors undermine the trustworthiness of deep learning models for medical image segmentation. Mechanisms for detecting and correcting such failures are essential for safely translating this technology into clinics and are likely to be a requirement of future regulations on artificial intelligence (AI). In this work, we propose a trustworthy AI theoretical framework and a practical system that can augment any backbone AI system using a fallback method and a fail-safe mechanism based on Dempster-Shafer theory. Our approach relies on an actionable definition of trustworthy AI. Our method automatically discards the voxel-level labeling predicted by the backbone AI that violate expert knowledge and relies on a fallback for those voxels. We demonstrate the effectiveness of the proposed trustworthy AI approach on the largest reported annotated dataset of fetal MRI consisting of 540 manually annotated fetal brain 3D T2w MRIs from 13 centers. Our trustworthy AI method improves the robustness of four backbone AI models for fetal brain MRIs acquired across various centers and for fetuses with various brain abnormalities 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Aertsen, Michael  |e verfasserin  |4 aut 
700 1 |a Kofler, Florian  |e verfasserin  |4 aut 
700 1 |a Bink, Andrea  |e verfasserin  |4 aut 
700 1 |a David, Anna L  |e verfasserin  |4 aut 
700 1 |a Deprest, Thomas  |e verfasserin  |4 aut 
700 1 |a Emam, Doaa  |e verfasserin  |4 aut 
700 1 |a Guffens, Frederic  |e verfasserin  |4 aut 
700 1 |a Jakab, Andras  |e verfasserin  |4 aut 
700 1 |a Kasprian, Gregor  |e verfasserin  |4 aut 
700 1 |a Kienast, Patric  |e verfasserin  |4 aut 
700 1 |a Melbourne, Andrew  |e verfasserin  |4 aut 
700 1 |a Menze, Bjoern  |e verfasserin  |4 aut 
700 1 |a Mufti, Nada  |e verfasserin  |4 aut 
700 1 |a Pogledic, Ivana  |e verfasserin  |4 aut 
700 1 |a Prayer, Daniela  |e verfasserin  |4 aut 
700 1 |a Stuempflen, Marlene  |e verfasserin  |4 aut 
700 1 |a Van Elslander, Esther  |e verfasserin  |4 aut 
700 1 |a Ourselin, Sebastien  |e verfasserin  |4 aut 
700 1 |a Deprest, Jan  |e verfasserin  |4 aut 
700 1 |a Vercauteren, Tom  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 10. Mai, Seite 3784-3795  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:10  |g month:05  |g pages:3784-3795 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3346330  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 10  |c 05  |h 3784-3795