EI-MVSNet : Epipolar-Guided Multi-View Stereo Network With Interval-Aware Label

Recent learning-based methods demonstrate their strong ability to estimate depth for multi-view stereo reconstruction. However, most of these methods directly extract features via regular or deformable convolutions, and few works consider the alignment of the receptive fields between views while con...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 09., Seite 753-766
1. Verfasser: Chang, Jiahao (VerfasserIn)
Weitere Verfasser: He, Jianfeng, Zhang, Tianzhu, Yu, Jiyang, Wu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM366849786
003 DE-627
005 20240115232023.0
007 cr uuu---uuuuu
008 240114s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3347929  |2 doi 
028 5 2 |a pubmed24n1260.xml 
035 |a (DE-627)NLM366849786 
035 |a (NLM)38194375 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chang, Jiahao  |e verfasserin  |4 aut 
245 1 0 |a EI-MVSNet  |b Epipolar-Guided Multi-View Stereo Network With Interval-Aware Label 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent learning-based methods demonstrate their strong ability to estimate depth for multi-view stereo reconstruction. However, most of these methods directly extract features via regular or deformable convolutions, and few works consider the alignment of the receptive fields between views while constructing the cost volume. Through analyzing the constraint and inference of previous MVS networks, we find that there are still some shortcomings that hinder the performance. To deal with the above issues, we propose an Epipolar-Guided Multi-View Stereo Network with Interval-Aware Label (EI-MVSNet), which includes an epipolar-guided volume construction module and an interval-aware depth estimation module in a unified architecture for MVS. The proposed EI-MVSNet enjoys several merits. First, in the epipolar-guided volume construction module, we construct cost volume with features from aligned receptive fields between different pairs of reference and source images via epipolar-guided convolutions, which take rotation and scale changes into account. Second, in the interval-aware depth estimation module, we attempt to supervise the cost volume directly and make depth estimation independent of extraneous values by perceiving the upper and lower boundaries, which can achieve fine-grained predictions and enhance the reasoning ability of the network. Extensive experimental results on two standard benchmarks demonstrate that our EI-MVSNet performs favorably against state-of-the-art MVS methods. Specifically, our EI-MVSNet ranks 1st on both intermediate and advanced subsets of the Tanks and Temples benchmark, which verifies the high precision and strong robustness of our model 
650 4 |a Journal Article 
700 1 |a He, Jianfeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Yu, Jiyang  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 09., Seite 753-766  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:09  |g pages:753-766 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3347929  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 09  |h 753-766