Antioxidant response to ZnO nanoparticles in juvenile Takifugu obscurus : protective effects of salinity
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 33(2024), 1 vom: 09. Jan., Seite 85-93 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Antioxidant stress Integrated biomarker response Salinity Takifugu obscurus ZnO nanoparticles Antioxidants Zinc Oxide SOI2LOH54Z |
Zusammenfassung: | © 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. The extensive utilization of Zinc Oxide nanoparticles (ZnO NPs) has garnered significant attention due to their detrimental impacts on ecosystem. Unfortunately, ecotoxicity of ZnO NPs in coastal waters with fluctuating salinity has been disregarded. This study mainly discussed the toxic effects of ZnO NPs on species inhabiting the transition zones between freshwater and brackish water, who are of great ecological and economic importance among fish. To serve as the model organism, Takifugu obscurus, a juvenile euryhaline fish, was exposed to different ZnO NPs concentrations (0-200 mg/L) and salinity levels (0 and 15 ppt). The results showed that a moderate increase in salinity (15 ppt) could alleviate the toxic effect of ZnO NPs, as evidenced by improved survival rates. The integrated biomarker response index on oxidative stress also revealed that the toxicity of ZnO NPs was higher in freshwater compared to brackish water. These outcomes can be attributed to higher salinity (15 ppt) reducing the bioavailability of ZnO NPs by facilitating their aggregation and inhibiting the release of metal ions. It is noteworthy that elevated salinity was found to alleviate ZnO NPs toxicity by means of osmotic adjustment via the activation of Na+/K+-ATPase activity. This study demonstrates the salinity-dependent effect of ZnO NPs on T. obscurus, suggesting the possibility for euryhaline fish like T. obscurus to adapt their habitat towards more saline environments, under constant exposure to ZnO NPs |
---|---|
Beschreibung: | Date Completed 08.02.2024 Date Revised 08.02.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-023-02726-8 |