|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM366817299 |
003 |
DE-627 |
005 |
20241021232402.0 |
007 |
cr uuu---uuuuu |
008 |
240114s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202311432
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1574.xml
|
035 |
|
|
|a (DE-627)NLM366817299
|
035 |
|
|
|a (NLM)38191132
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
245 |
1 |
0 |
|a Reorganizing Helmholtz Adsorption Plane Enables Sodium Layered-Oxide Cathode beyond High Oxidation Limits
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a ErratumIn: Adv Mater. 2024 Oct 21:e2414441. doi: 10.1002/adma.202414441. - PMID 39428925
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Sodium layered-oxides (NaxTMO2) sustain severe interfacial stability issues when subjected to battery applications. Particularly at high potential, the oxidation limits including transition metal dissolution and solid electrolyte interphase reformation are intertwined upon the cathode, resulting in poor cycle ability. Herein, by rearranging the complex and structure of the Helmholtz absorption plane adjacent to NaxTMO2 cathodes, the mechanism of constructing stable cathode/electrolyte interphase (CEI) to push up oxidation limits is clarified. The strong absorbent fluorinated anions replace the solvents into the inner Helmholtz plane, thereby reorganizing the Helmholtz absorption structure and spontaneously inducing anion-dominated interphase to envelop more active sites for layered oxides. More importantly, such multi-component CEI proves effective for the long-term durability of a series of manganese-based oxide cathodes, which achieves a 1500-cycles lifetime against high oxidation voltage limit beyond 4.3 V. This work unravels the key role of breaking high-oxidation limits in attaining higher energy density of layered-oxide systems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Helmholtz plane (HP)
|
650 |
|
4 |
|a cathode/electrolyte interphase (CEI)
|
650 |
|
4 |
|a high‐oxidation limits
|
650 |
|
4 |
|a long‐term durability
|
650 |
|
4 |
|a sodium layered‐oxides
|
700 |
1 |
|
|a Liu, Bo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xia, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Ya-Xuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Yin-Qi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Zhen-Bo
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 38 vom: 23. Sept., Seite e2311432
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:38
|g day:23
|g month:09
|g pages:e2311432
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202311432
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 38
|b 23
|c 09
|h e2311432
|