Flexible Cages Enable Robust Supramolecular Elastomers

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 16 vom: 25. Apr., Seite e2311992
Auteur principal: Xu, Jing (Auteur)
Autres auteurs: Shao, Mingchao, Wang, Xiaoyue, Chen, Tianze, Li, Song, Zhang, Xinrui, Wang, Tingmei, Zhang, Yaoming, Yang, Zenghui, Wang, Qihua
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article energy dissipation hydrogen bonds organic imide cages polyurethanes supramolecular elastomers
Description
Résumé:© 2024 Wiley‐VCH GmbH.
Advances in modern industrial technology continue to place stricter demands on engineering polymeric materials, but simultaneously possessing superior strength and toughness remains a daunting challenge. Herein, a pioneering flexible cage-reinforced supramolecular elastomer (CSE) is reported that exhibits superb robustness, tear resistance, anti-fatigue, and shape memory properties, achieved by innovatively introducing organic imide cages (OICs) into supramolecular networks. Intriguingly, extremely small amounts of OICs make the elastomer stronger, significantly improving mechanical strength (85.0 MPa; ≈10-fold increase) and toughness (418.4 MJ m-3; ≈7-fold increase). Significantly, the cooperative effect of gradient hydrogen bonds and OICs is experimentally and theoretically demonstrated as flexible nodes, enabling more robust supramolecular networks. In short, the proposed strengthening strategy of adding flexible cages effectively balances the inherent conflict between material strength and toughness, and the prepared CSEs are anticipated to be served in large-scale devices such as TBMs in the future
Description:Date Revised 18.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202311992