Spectral Engineering of Optical Microresonators in Anisotropic Lithium Niobate Crystal

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 17 vom: 05. Apr., Seite e2308840
1. Verfasser: Zhang, Ke (VerfasserIn)
Weitere Verfasser: Chen, Yikun, Sun, Wenzhao, Chen, Zhaoxi, Feng, Hanke, Wang, Cheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article anisotropic crystal lithium niobate optical microresonator photonic crystal ring spectral engineering synthetic frequency dimension
LEADER 01000caa a22002652 4500
001 NLM366720279
003 DE-627
005 20240425232642.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202308840  |2 doi 
028 5 2 |a pubmed24n1386.xml 
035 |a (DE-627)NLM366720279 
035 |a (NLM)38181412 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Ke  |e verfasserin  |4 aut 
245 1 0 |a Spectral Engineering of Optical Microresonators in Anisotropic Lithium Niobate Crystal 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a On-chip optical microresonators are essential building blocks in integrated optics. The ability to arbitrarily engineer their resonant frequencies is crucial for exploring novel physics in synthetic frequency dimensions and practical applications like nonlinear optical parametric processes and dispersion-engineered frequency comb generation. Photonic crystal ring (PhCR) resonators are a versatile tool for such arbitrary frequency engineering, by controllably creating mode splitting at selected resonances. To date, these PhCRs have mostly been demonstrated in isotropic photonic materials, while such engineering can be significantly more complicated in anisotropic platforms that often offer more fruitful optical properties. Here, the spectral engineering of chip-scale optical microresonators is realized in the anisotropic lithium niobate (LN) crystal by a gradient design that precisely compensates for variations in both refractive index and perturbation strength. Controllable frequency splitting is experimentally demonstrated at single and multiple selected resonances in LN PhCR resonators with different sizes, while maintaining high quality-factors up to 1 × 106. Moreover, a sharp boundary is experimentally constructed in the synthetic frequency dimension based on an actively modulated x-cut LN gradient-PhCR, opening up new paths toward the arbitrary control of electro-optic comb spectral shapes and exploration of novel physics in the frequency degree of freedom 
650 4 |a Journal Article 
650 4 |a anisotropic crystal 
650 4 |a lithium niobate 
650 4 |a optical microresonator 
650 4 |a photonic crystal ring 
650 4 |a spectral engineering 
650 4 |a synthetic frequency dimension 
700 1 |a Chen, Yikun  |e verfasserin  |4 aut 
700 1 |a Sun, Wenzhao  |e verfasserin  |4 aut 
700 1 |a Chen, Zhaoxi  |e verfasserin  |4 aut 
700 1 |a Feng, Hanke  |e verfasserin  |4 aut 
700 1 |a Wang, Cheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 17 vom: 05. Apr., Seite e2308840  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:17  |g day:05  |g month:04  |g pages:e2308840 
856 4 0 |u http://dx.doi.org/10.1002/adma.202308840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 17  |b 05  |c 04  |h e2308840