Anti-Fatigue Tandem Organic Photovoltaics for Indoor Illumination

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 16 vom: 17. Apr., Seite e2311476
1. Verfasser: Li, Hao (VerfasserIn)
Weitere Verfasser: Zheng, Zhong, Yang, Shiwei, Wang, Tao, Yang, Yi, Tang, Yanjie, Zhang, Shaoqing, Hou, Jianhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article fatigue indoor power supply power conversion efficiency stability tandem organic photovoltaics
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
The ability of achieving high efficiency makes tandem organic photovoltaics (PVs) a competitive technique in potential indoor applications. Except high efficiency, reliable indoor energy supply also calls for outstanding stability. However, unavoidable unstable voltage supply from the circuit control system for indoor light sources like light emitting diodes (LED) and incandescent lamps would cause carrier density fluctuation and device fatigue driven by periodic light/dark switching. In this work, the strobing-induced fatigue within the bulk heterojunction (BHJ)/interconnecting layer (ICL) interface is first revealed and overcome. Based on reliable and effective interfacial doping between conjugated acceptor and metal oxide, the interfacial capacitance that determines the strobing-induced fatigue, has been significantly restrained. The imbalance carrier migration and fierce inter-layer accommodating during the burn-in stage caused by light strobing are substantially diminished. Benefit from this method, the stability of tandem devices is highly enhanced under strobing indoor illumination, and a champion efficiency (35.02%) is obtained. The method provides guidance for further material design for interconnecting layers in organic photovoltaics
Beschreibung:Date Revised 18.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202311476