Estimation and prediction for Burr type III distribution based on unified progressive hybrid censoring scheme

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 1 vom: 30., Seite 1-33
1. Verfasser: Dutta, Subhankar (VerfasserIn)
Weitere Verfasser: Kayal, Suchandan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article 62F10 62F15 62N01 62N02 Bayes estimates Bayesian prediction EM and SEM Metropolis–Hastings algorithm Unified progressive hybrid censoring scheme maximum a posterior estimates
LEADER 01000naa a22002652 4500
001 NLM366697765
003 DE-627
005 20240108142706.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2113865  |2 doi 
028 5 2 |a pubmed24n1250.xml 
035 |a (DE-627)NLM366697765 
035 |a (NLM)38179163 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dutta, Subhankar  |e verfasserin  |4 aut 
245 1 0 |a Estimation and prediction for Burr type III distribution based on unified progressive hybrid censoring scheme 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.01.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a The present communication develops the tools for estimation and prediction of the Burr-III distribution under unified progressive hybrid censoring scheme. The maximum likelihood estimates of model parameters are obtained. It is shown that the maximum likelihood estimates exist uniquely. Expectation maximization and stochastic expectation maximization methods are employed to compute the point estimates of unknown parameters. Based on the asymptotic distribution of the maximum likelihood estimators, approximate confidence intervals are proposed. In addition, the bootstrap confidence intervals are constructed. Furthermore, the Bayes estimates are derived with respect to squared error and LINEX loss functions. To compute the approximate Bayes estimates, Metropolis-Hastings algorithm is adopted. The highest posterior density credible intervals are obtained. Further, maximum a posteriori estimates of the model parameters are computed. The Bayesian predictive point, as well as interval estimates, are proposed. A Monte Carlo simulation study is employed in order to evaluate the performance of the proposed statistical procedures. Finally, two real data sets are considered and analysed to illustrate the methodologies established in this paper 
650 4 |a Journal Article 
650 4 |a 62F10 
650 4 |a 62F15 
650 4 |a 62N01 
650 4 |a 62N02 
650 4 |a Bayes estimates 
650 4 |a Bayesian prediction 
650 4 |a EM and SEM 
650 4 |a Metropolis–Hastings algorithm 
650 4 |a Unified progressive hybrid censoring scheme 
650 4 |a maximum a posterior estimates 
700 1 |a Kayal, Suchandan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 1 vom: 30., Seite 1-33  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:1  |g day:30  |g pages:1-33 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2113865  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 1  |b 30  |h 1-33