Bayesian dynamic network modelling : an application to metabolic associations in cardiovascular diseases

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 1 vom: 01., Seite 114-138
1. Verfasser: Molinari, Marco (VerfasserIn)
Weitere Verfasser: Cremaschi, Andrea, De Iorio, Maria, Chaturvedi, Nishi, Hughes, Alun, Tillin, Therese
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Dynamic shrinkage priors Gibbs sampling graphical models metabolomics nodewise regression
LEADER 01000caa a22002652 4500
001 NLM366697722
003 DE-627
005 20240313234019.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2116746  |2 doi 
028 5 2 |a pubmed24n1326.xml 
035 |a (DE-627)NLM366697722 
035 |a (NLM)38179161 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Molinari, Marco  |e verfasserin  |4 aut 
245 1 0 |a Bayesian dynamic network modelling  |b an application to metabolic associations in cardiovascular diseases 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.03.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
520 |a We propose a novel approach to the estimation of multiple Graphical Models to analyse temporal patterns of association among a set of metabolites over different groups of patients. Our motivating application is the Southall And Brent REvisited (SABRE) study, a tri-ethnic cohort study conducted in the UK. We are interested in identifying potential ethnic differences in metabolite levels and associations as well as their evolution over time, with the aim of gaining a better understanding of different risk of cardio-metabolic disorders across ethnicities. Within a Bayesian framework, we employ a nodewise regression approach to infer the structure of the graphs, borrowing information across time as well as across ethnicities. The response variables of interest are metabolite levels measured at two time points and for two ethnic groups, Europeans and South-Asians. We use nodewise regression to estimate the high-dimensional precision matrices of the metabolites, imposing sparsity on the regression coefficients through the dynamic horseshoe prior, thus favouring sparser graphs. We provide the code to fit the proposed model using the software Stan, which performs posterior inference using Hamiltonian Monte Carlo sampling, as well as a detailed description of a block Gibbs sampling scheme 
650 4 |a Journal Article 
650 4 |a Dynamic shrinkage priors 
650 4 |a Gibbs sampling 
650 4 |a graphical models 
650 4 |a metabolomics 
650 4 |a nodewise regression 
700 1 |a Cremaschi, Andrea  |e verfasserin  |4 aut 
700 1 |a De Iorio, Maria  |e verfasserin  |4 aut 
700 1 |a Chaturvedi, Nishi  |e verfasserin  |4 aut 
700 1 |a Hughes, Alun  |e verfasserin  |4 aut 
700 1 |a Tillin, Therese  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 1 vom: 01., Seite 114-138  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:1  |g day:01  |g pages:114-138 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2116746  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 1  |b 01  |h 114-138