High-Throughput Strategies in the Discovery of Thermoelectric Materials

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 13 vom: 08. März, Seite e2311278
1. Verfasser: Deng, Tingting (VerfasserIn)
Weitere Verfasser: Qiu, Pengfei, Yin, Tingwei, Li, Ze, Yang, Jiong, Wei, Tianran, Shi, Xun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review high‐throughput (HTP) screening materials genome initiative thermoelectric materials
LEADER 01000caa a22002652 4500
001 NLM366670131
003 DE-627
005 20240329000334.0
007 cr uuu---uuuuu
008 240108s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202311278  |2 doi 
028 5 2 |a pubmed24n1353.xml 
035 |a (DE-627)NLM366670131 
035 |a (NLM)38176395 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Deng, Tingting  |e verfasserin  |4 aut 
245 1 0 |a High-Throughput Strategies in the Discovery of Thermoelectric Materials 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Searching for new high-performance thermoelectric (TE) materials that are economical and environmentally friendly is an urgent task for TE society, but the advancements are greatly limited by the time-consuming and high cost of the traditional trial-and-error method. The significant progress achieved in the computing hardware, efficient computing methods, advance artificial intelligence algorithms, and rapidly growing material data have brought a paradigm shift in the investigation of TE materials. Many electrical and thermal performance descriptors are proposed and efficient high-throughput (HTP) calculation methods are developed with the purpose to quickly screen new potential TE materials from the material databases. Some HTP experiment methods are also developed which can increase the density of information obtained in a single experiment with less time and lower cost. In addition, machine learning (ML) methods are also introduced in thermoelectrics. In this review, the HTP strategies in the discovery of TE materials are systematically summarized. The applications of performance descriptor, HTP calculation, HTP experiment, and ML in the discovery of new TE materials are reviewed. In addition, the challenges and possible directions in future research are also discussed 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a high‐throughput (HTP) screening 
650 4 |a materials genome initiative 
650 4 |a thermoelectric materials 
700 1 |a Qiu, Pengfei  |e verfasserin  |4 aut 
700 1 |a Yin, Tingwei  |e verfasserin  |4 aut 
700 1 |a Li, Ze  |e verfasserin  |4 aut 
700 1 |a Yang, Jiong  |e verfasserin  |4 aut 
700 1 |a Wei, Tianran  |e verfasserin  |4 aut 
700 1 |a Shi, Xun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 13 vom: 08. März, Seite e2311278  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:13  |g day:08  |g month:03  |g pages:e2311278 
856 4 0 |u http://dx.doi.org/10.1002/adma.202311278  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 13  |b 08  |c 03  |h e2311278