Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 18 vom: 03. Mai, Seite e2311154
1. Verfasser: Choe, Jun Kyu (VerfasserIn)
Weitere Verfasser: Kim, Suntae, Lee, Ah-Young, Choi, Cholong, Cho, Jae-Hyeon, Jo, Wook, Song, Myoung Hoon, Cha, Chaenyung, Kim, Jiyun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biodegradable bioelectronic implant magnetoelectric nanoparticle nanofiber personalization wireless stimulation
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost-effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead-free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high-selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron-like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies
Beschreibung:Date Completed 02.05.2024
Date Revised 06.05.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202311154